Skip to main content
Log in

Mitochondrial Heterogeneity Within and Between Different Cell Types

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Mitochondrial membrane potentials (MMP) reflect the functional status of mitochondria within cells. Our recently published method provides a semiquantitative estimate of the MMP of populations of mitochondrial-like particles within living cells at 37°C using a combination of conventional fluorescence microscopy and three-dimensional deconvolution by exhaustive photon reassignment. The current studies demonstrate variations in the mean MMP among six different cell types (i.e., human skin fibroblasts, naive and differentiated PC12 cells, SH-SY5Y cells, dopaminergic cells, and primary cultured neurons) and MMP in different parts of the same cells (i.e., growth cones vs. cell bodies). The largest MMP was in nontransformed fibroblasts (mean MMP was −112 ± 2 mV), while the lowest was in transformed neuroblastoma SH-SY5Y cells (−87 ± 2 mV). This method revealed large variations in mean MMP among cells of the same type within a single culture dish. The percent area of the cell occupied by mitochondrial-like particles differed among different cell types, and ranged from 4% in SH-SY5Y to 24% in differentiated PC12 cells. The data can also be analyzed by calculating the sum potential of all of the pixels in a cell. The sum MMP per cell revealed a large range between cell types from −2238 ± 355 mV/μm2 in SH-Y5Y to −15445 ± 1039 mV/μm2 in PC12 cells. Although biological implications of heterogeneity of MMP are not clear, this approach provides a tool to address this question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Budd, S. L. and Nicholls, D. G. 1996. Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J. Neurochem. 67:2282–2291.

    PubMed  Google Scholar 

  2. White, R. J. and Reynolds, I. J. 1995. Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons. J. Neurosci. 15:1318–1328.

    PubMed  Google Scholar 

  3. Schinder, A. F., Olson, E. C., Spitzer, N. C., and Montal, M. 1996. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J. Neurosci. 16:6125–6133.

    PubMed  Google Scholar 

  4. Nicholls, D. G. and Budd, S. L. 2000. Mitochondria and neuronal survival. Physiol. Rev. 80:315–360.

    PubMed  Google Scholar 

  5. Boveris, A., Oshino, N., and Chance, B. 1972. The cellular production of hydrogen peroxide. Biochem. J. 128:617–630.

    PubMed  Google Scholar 

  6. Mitchell, P. 1979. Keilin's respiratory chain concept and its chemiosmotic consequences. Science 206:1148–1159.

    PubMed  Google Scholar 

  7. Azzone, G. F., Petronilli, V., and Zoratti, M. 1984. 'Cross-talk' between redox-and ATP-driven H+ pumps. Biochem. Soc. Trans. 12:414–416.

    PubMed  Google Scholar 

  8. Loew, L. M., Tuft, R. A., Carrington, W., and Fay, F. S. 1993. Imaging in five dimensions: Time-dependent membrane potentials in individual mitochondria. Biophys. J. 65:2396–2407.

    PubMed  Google Scholar 

  9. Fink, C., Morgan, F., and Loew, L. M. 1998. Intracellular fluorescent probe concentrations by confocal microscopy. Biophys. J. 75:1648–1658.

    PubMed  Google Scholar 

  10. Scaduto, R. C. Jr and Grotyohann, L. W. 1999. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys. J. 76:469–477.

    PubMed  Google Scholar 

  11. Bossy-Wetzel, E., Newmeyer, D. D., and Green, D. R. 1998. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 17:37–49.

    PubMed  Google Scholar 

  12. Bortner, C. D. and Cidlowski, J. A. 1999. Caspase independent/dependent regulation of K(+), cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J. Biol. Chem. 274:21953–21962.

    PubMed  Google Scholar 

  13. Rottenberg, H. and Wu, S. 1998. Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells. Biochim. Biophys. Acta 1404:393–404.

    PubMed  Google Scholar 

  14. Zhang, H., Huang, H. M., Carson, R. C., Mahmood, J., Thomas, H. M., and Gibson, G. E. 2001. Assessment of membrane potentials of mitochondrial populations in living cells. Anal. Biochem. 298:170–180.

    PubMed  Google Scholar 

  15. Farkas, D. L., Wei, M. D., Febbroriello, P., Carson, J. H., and Loew, L. M. 1989. Simultaneous imaging of cell and mitochondrial membrane potentials. Biophys. J. 56:1053–1069.

    PubMed  Google Scholar 

  16. Ehrenberg, B., Montana, V., Wei, M. D., Wuskell, J. P., and Loew, L. M. 1988. Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophys. J. 53:785–794.

    PubMed  Google Scholar 

  17. Wakade, T. D., Bhave, A. S., Bhave, S. V., and Wakade, A. R. 1991. Activation of muscarinic and serotonergic receptors results in phosphoinositide hydrolysis but not in mobilization of calcium in sympathetic neurons. Blood Vessels 28:6–10.

    PubMed  Google Scholar 

  18. Gibson, G. E., Zhang, H., Sheu, K. F., Bogdanovich, N., Lindsay, J. G., Lannfelt, L., Vestling, M., and Cowburn, R. F. 1998. Alpha-ketoglutarate dehydrogenase in Alzheimer brains bearing the APP670/671 mutation. Ann. Neurol. 44:676–681.

    PubMed  Google Scholar 

  19. Kim, K. S., Huang, H. M., Zhang, H., Wagner, J., Joh, T., and Gibson, G. E. 1995. The role of signal transduction systems in mediating cell density dependent changes in tyrosine hydroxylase gene expression. Brain Res. Mol. Brain Res. 33:254–260.

    PubMed  Google Scholar 

  20. Brewer, G. J., Torricelli, J. R., Evege, E. K., and Price, P. J. 1993. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35:567–576.

    PubMed  Google Scholar 

  21. Son, J. H., Chun, H. S., Joh, T. H., Cho, S., Conti, B., and Lee, J. W. 1999. Neuroprotection and neuronal differentiation studies using substantia nigra dopaminergic cells derived from transgenic mouse embryos. J. Neurosci. 19:10–20.

    PubMed  Google Scholar 

  22. Funfschilling, U. and Rospert, S. 1999. Nascent polypeptide-associated complex stimulates protein import into yeast mitochondria. Mol. Biol. Cell 10:3289–3299.

    PubMed  Google Scholar 

  23. Furuya, S., Mihara, K., Aimoto, S., and Omura, T. 1991. Cytosolic and mitochondrial surface factor-independent import of a synthetic peptide into mitochondria. EMBO J 10:1759–1766.

    PubMed  Google Scholar 

  24. Nicholls, D. G. and Akerman, K. E. 1981. Biochemical approaches to the study of cytosolic calcium regulation in nerve endings. Philos. Trans. R. Soc. Lond. B Biol. Sci. 296:115–122.

    PubMed  Google Scholar 

  25. Liu, S. S. 1997. Generating, partitioning, targeting and functioning of superoxide in mitochondria. Biosci. Rep. 17:259–272.

    PubMed  Google Scholar 

  26. Papa, S. and Skulachev, V. P. 1997. Reactive oxygen species, mitochondria, apoptosis and aging. Mol. Cell. Biochem. 174:305–319.

    PubMed  Google Scholar 

  27. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Brenner, C., Larochette, N., Prevost, M. C., Alzari, P. M., and Kroemer, G. 1999. Mitochondrial release of caspase-2 and-9 during the apoptotic process. J. Exp. Med. 189:381–394.

    PubMed  Google Scholar 

  28. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacote, E., Costantini, P., Loeffler, M., Larochetter, N., Goodlett, Aebersold, R., Siderovski, D. P., Penninger, J. M., and Kroemer, G. 1999. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446.

    PubMed  Google Scholar 

  29. Metivier, D., Dallaporta, B., Zamzami, N., Larochette, N., Susin, S. A., Marzo, I., and Kroemer, G. 1998. Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells: Comparison of seven mitochondrion-specific fluorochromes. Immunol. Lett. 67:151–153.

    Google Scholar 

  30. Calingasan, N. Y., Baker, H., Sheu, K. F., and Gibson, G. E. 1994. Selective enrichment of cholinergic neurons with the alpha-ketoglutarate dehydrogenase complex in rat brain. Neurosci. Lett. 168:209–212.

    PubMed  Google Scholar 

  31. Wong-Riley, M. T. 1989. Cytochrome oxidase: An endogenous metabolic marker for neuronal activity. Trends Neurosci. 12:94–101.

    PubMed  Google Scholar 

  32. Yee, S. and Choi, B. H. 1996. Oxidative stress in neurotoxic effects of methylmercury poisoning. Neurotoxicology 17:17–26.

    PubMed  Google Scholar 

  33. Park, L. C., Calingasan, N. Y., Uchida, K., Zhang, H., and Gibson, G. E. 2000. Metabolic impairment elicits brain cell type-selective changes in oxidative stress and cell death in culture. J. Neurochem. 74:114–124.

    PubMed  Google Scholar 

  34. Lai, J. C. and Clark, J. B. 1976. Preparation and properties of mitochondria derived from synaptosomes. Biochem. J. 154:423–432.

    PubMed  Google Scholar 

  35. Hevner, R. F. and Wong-Riley, M. T. 1991. Neuronal expression of nuclear and mitochondrial genes for cytochrome oxidase (CO) subunits analyzed by in situ hybridization: Comparison with CO activity and protein. J. Neurosci. 11:1942–1958.

    PubMed  Google Scholar 

  36. Gibson, G., Toral-Barza, L., and Zhang, H. 1997. Selective changes in cell bodies and growth cones of nerve growth factor-differentiated PC12 cells induced by chemical hypoxia. J. Neurochem. 69:603–611.

    PubMed  Google Scholar 

  37. Follstad, B. D., Wang, D. I., and Stephanopoulos, G. 2000. Mitochondrial membrane potential differentiates cells resistant to apoptosis in hybridoma cultures. Eur. J. Biochem. 267:6534–6540.

    PubMed  Google Scholar 

  38. Andoh, T., Chock, P. B., and Chiueh, C. C. 2002. The roles of thioredoxin in protection against oxidative stress-induced apoptosis in SH-SY5Y cells. J. Biol. Chem. 277:9655–9660.

    PubMed  Google Scholar 

  39. Mattson, M. P., Chan, S. L., Lee, J., Liu, D., Cheng, A., and Pedersen, W. A. 2002. Seeking and using energy: A driving force in the development and degeneration of neuronal circuits? Soc. Neurosci. Abs. 820:12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary E. Gibson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, HM., Fowler, C., Zhang, H. et al. Mitochondrial Heterogeneity Within and Between Different Cell Types. Neurochem Res 29, 651–658 (2004). https://doi.org/10.1023/B:NERE.0000014835.34495.9c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000014835.34495.9c

Navigation