Skip to main content
Log in

Morphology and monoaminergic modulation of Crustacean Hyperglycemic Hormone-like immunoreactive neurons in the lobster nervous system

  • Published:
Journal of Neurocytology

Abstract

Neuronal somata located near branch points in the second thoracic nerve roots of the lobster are immunoreactive for Crustacean Hyperglycemic Hormone (CHH)-like peptides, a family of putative stress hormones. We have employed intracellular dye injection, immunostaining, and confocal imaging to observe the anatomy of these root neurons, which are morphologically diverse and dye coupled. Some root neurons contribute to neurosecretory structures at the points of exit of the root from the nerve cord. Other CNS-projecting root neurons send projections into the T5-A1 interganglionic connectives. Neurosecretory elements of the serotonin (5HT) and octopamine (OCT) systems, implicated in postural control and aggression, terminate densely in the vicinity of the second thoracic root neurons. We have confirmed by double immunostaining for 5HT and CHH-like peptides that the endings of the 5HT neurons are in close apposition to root neurons in the superficial regions of the root. We have also extended previous studies documenting electrophysiological responses of the root neurons to 5HT or OCT. Bath-applied 5HT and OCT inhibit the spontaneous bursting activity of root neurons at concentrations higher than 100 nM. The root neurons desensitize to the persistent presence of high concentrations of 5HT, but not OCT, in the bath. Nanomolar concentrations of OCT, but not 5HT have an excitatory effect on the spontaneous bursting activity of root neurons. This region of the lobster nervous system is of continuing interest, as identified neurons of three neuromodulatory systems implicated in stress and aggression converge and interact at the level of identified neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AIKEN, D. E. (1973) Proecdysis, setal development, and molt prediction in the American Lobster (Homarus americanus). Journal of Fisheries Research Board of Canada 30(9), 1337–1344.

    Google Scholar 

  • BELTZ, B. S. & KRAVITZ, E. A. (1983) Mapping of serotonin-like immunoreactivity in the lobster nervous system. Journal of Neuroscience 3, 585–602.

    PubMed  Google Scholar 

  • BELTZ, B. S. & KRAVITZ, E. A. (1987) Physiological identification, morphological analysis, and development of identified serotonin-proctolin containing neurons in the lobster ventral nerve cord. Journal of Neuroscience 7, 533–546.

    PubMed  Google Scholar 

  • CARRASCO, G. A. & VAN DE KAR, L. D. (2003) Neuroendocrine pharmacology of stress. European Journal of Pharmacology 463(1–3), 235–272.

    PubMed  Google Scholar 

  • CHANG, E. S., CHANG, S. A., KELLER, R., REDDY, P. S., SNYDER, M. J. & SPEES, J. L. (1999a) Quantification of stress in lobsters: Crustacean hyperglycemic hormone, stress proteins, and gene expression. American Zoology 39, 487–495.

    Google Scholar 

  • CHANG, E. S., CHANG, S. A., BELTZ, B. S. & KRAVITZ, E. A. (1999b) Crustacean hyperglycemic hormone in the lobster nervous system: Localization and release from cells in the subesophageal ganglion and thoracic second roots. Journal of Comparative Neurology 414(1), 50–56.

    PubMed  Google Scholar 

  • CHUNG, J. S., DIRCKSEN, H. & WEBSTER, S. G. (1999) A remarkable, precisely timed release of hyperglycemic hormone from endocrine cells in the gut is associated with ecdysis in the crab Carcinus maenas. Proceedings of the National Academy of Sciences of the United States of America 96(23), 13103–13107.

    Google Scholar 

  • EVANS, P. D., KRAVITZ, E. A. & TALAMO, B. R. (1976). Octopamine release at two points along lobster nerve trunks. Journal of Physiology 262, 71–89.

    PubMed  Google Scholar 

  • FERRIS, C. F., MELLONI, R. H. JR., KOPPEL, G., PERRY, K. W., FULLER, R. W. & DELVILLE, Y. (1997) Vasopressin/ serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. Journal of Neuroscience 17(11), 4331–4340.

    PubMed  Google Scholar 

  • HARRIS-WARRICK, R. M. & KRAVITZ, E. A. (1984) Cellular mechanisms for modulation of posture by octopamine and serotonin in the lobster. Journal of Neuroscience 4(8), 1976–1993.

    PubMed  Google Scholar 

  • HE, S., WEILER, R. & VANEY, D. I. (2000) Endogenous dopaminergic regulation of horizontal cell coupling in the mammalian retina. Journal of Comparative Neurology 418(1), 33–40.

    PubMed  Google Scholar 

  • HEINRICH, R., BRAUNIG, P., WALTER, I., SCHNEIDER, H. & KRAVITZ, E. A. (2000) Aminergic neuron systems of lobsters: Morphology and electrophysiology of octopamine-containing neurosecretory cells. Journal of Comparative Physiology [A] 186(7/8), 617–629.

    Google Scholar 

  • KELLER, R. (1992) Crustacean neuropeptides: Structures, functions and comparative aspects. Experientia 48(5), 439–448.

    PubMed  Google Scholar 

  • KOBIERSKI, L. A., BELTZ, B. S., TRIMMER, B. A. & KRAVITZ, E. A. (1987) FMRFamidelike peptides of Homarus americanus: Distribution, immunocytochemical mapping, and ultrastructural localization in terminal varicosities. Journal of Comparative Neurology 266(1), 1–15.

    PubMed  Google Scholar 

  • KONISHI, S. & KRAVITZ, E. A. (1978) The physiological properties of amine-containing neurones in the lobster nervous system. Journal of Physiology 279, 215–229.

    PubMed  Google Scholar 

  • LIVINGSTONE, M. S., HARRIS-WARRICK, R. M. & KRAVITZ, E. A. (1980) Serotonin and octopamine produce opposite postures in lobsters. Science 208, 76–79.

    Google Scholar 

  • LIVINGSTONE, M. S., SCHAEFFER, S. F. & KRAVITZ, E. A. (1981) Biochemistry and ultrastructure of serotonergic nerve endings in the lobster: Serotonin and octopamine are contained in different nerve endings. Journal of Neurobiology 12(1), 27–54.

    PubMed  Google Scholar 

  • MA, P. M., BELTZ, B. S. & KRAVITZ, E. A. (1992) Serotonin-containing neurons in lobsters: Their role as gain-setters in postural control mechanisms. Journal of Neurophysiology 68, 36–54.

    PubMed  Google Scholar 

  • PULVER, S. R. & MARDER, E. (2002) Neuromodulatory complement of the pericardial organs in the embryonic lobster, homarus americanus. Journal of Comparative Neurology 451(1), 79–90.

    PubMed  Google Scholar 

  • RALEIGH, M. J., MCGUIRE, M. T., BRAMMER, G. L., POLLACK, D. B. & YUWILER, A. (1991) Serotonergic mechanisms promote dominance acquisition in adult male vervet monkeys. Brain Research 559(2), 181–190.

    PubMed  Google Scholar 

  • RORIG, B. & SUTOR, B. (1996) Serotonin regulates gap junction coupling in the developing rat somatosensory cortex. European Journal of Neuroscience 8(8), 1685–1695.

    PubMed  Google Scholar 

  • RUBINOW, D. R. & SCHMIDT, P. J. (1996) Androgens, brain, and behavior. American Journal of Psychiatry 153(8), 974–984.

    PubMed  Google Scholar 

  • SCHNEIDER, H., TRIMMER, B. A., RAPUS, J., ECKERT, M., VALENTINE, D. E. & KRAVITZ, E. A. (1993) Mapping of octopamine-immunoreactive neurons in the central nervous system of the lobster. Journal of Comparative Neurology 329(1), 129–142.

    PubMed  Google Scholar 

  • SIWICKI, K. K. & BISHOP, C. A. (1986) Mapping of proctolinlike immunoreactivity in the nervous systems of lobster and crayfish. Journal of Comparative Neurology 243(4), 435–453.

    PubMed  Google Scholar 

  • VANEY, D. I. (1991) Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin. Neuroscience Letters 125, 187–190.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward A. Kravitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, A.C., Kravitz, E.A. Morphology and monoaminergic modulation of Crustacean Hyperglycemic Hormone-like immunoreactive neurons in the lobster nervous system. J Neurocytol 32, 253–263 (2003). https://doi.org/10.1023/B:NEUR.0000010084.10383.3b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEUR.0000010084.10383.3b

Keywords

Navigation