Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neural bases of an auditory illusion and its elimination in owls

Abstract

Humans and owls localize sounds by detecting the arrival time disparity between the ears. Both species determine the interaural time difference by finding the delay necessary to match the leading signal with the lagging one. This method produces ambiguity with periodic signals, because the two signals can be matched by delaying either one or the other. As predicted, owls localized periodic signals in illusory directions, whereas they always perceived the real source when signal bandwidth exceeded a certain value. This bandwidth also enabled higher-order auditory neurons to discriminate between real and illusory sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of real and illusory sound sources by an owl.
Figure 2: Response of a tectal neuron to ITD varies with signal bandwidth.
Figure 3: Responses of tectal neurons as a function of bandwidth and ITD.
Figure 4: Relative amplitudes of responses by tectal neurons to real and phantom ITDs.

Similar content being viewed by others

References

  1. Jeffress, L. A. A place theory of sound localization. J. Comp. Physiol. Psychol. 41, 35–39 (1948).

    Article  CAS  Google Scholar 

  2. Jeffress, L. A. in Binaural Signal Detection: Vector Theory. Foundations Of Modern Auditory Theory Vol. 2 (ed. Tobias, J. V.) 349–368 (Academic, New York, 1972).

    Google Scholar 

  3. Sayers, B. M. & Cherry, E. C. Mechanism of binaural fusion in the hearing of speech. J. Acoust. Soc. Am. 29, 973–987 (1957).

    Article  Google Scholar 

  4. Carr, C. E. & Konishi, M. Axonal delay-lines for time measurement in the owls brain-stem. Proc. Natl. Acad. Sci. USA 85, 8311–8315 (1988).

    Article  CAS  Google Scholar 

  5. Carr, C. E. & Konishi, M. A circuit for detection of interaural time differences in the brain stem of the barn owl. J. Neurosci. 10, 3227–3246 (1990).

    Article  CAS  Google Scholar 

  6. Overholt, E. M. & Rubel, E. W. & Hyson, R. L. 1992. A circuit for coding interaural time differences in the chick brainstem. J. Neurosci. 12, 1698–1708 (1992).

    Article  CAS  Google Scholar 

  7. Yin, T. C. & Chan, J. C. Interaural time sensitivity in medial superior olive of cat. J. Neurophysiol. 64, 465–488 (1990).

    Article  CAS  Google Scholar 

  8. Smith, P. H., Joris, P. X. & Yin, T. C. Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: evidence for delay lines to the medial superior olive. J. Comp. Neurol. 331, 245–260 (1993).

    Article  CAS  Google Scholar 

  9. Oertel, D. The role of timing in the brainstem auditory nuclei of vertebrates. Annu. Rev. Neurosci. 61, 497–516 (1999).

    CAS  Google Scholar 

  10. Stern, R. M., Zeiberg, A. S. & Trahiotis, C. Lateralization of complex binaural stimuli: a weighted-image model. J. Acoust. Soc. Am. 84, 156–165 (1988).

    Article  CAS  Google Scholar 

  11. Colburn, H. S. Theory of binaural interaction based on auditory-nerve data: I. General strategy and preliminary results on interaural discrimination. J. Acoust. Soc. Am. 54, 1458–1470 (1973).

    Article  CAS  Google Scholar 

  12. Colburn, H. S. in Auditory Computation (eds. Hawkins, H., McMullen, T., Fay, R. & Popper, A. N.) 332–400 (Springer, New York, 1995).

    Google Scholar 

  13. Saberi, K., Farahbod, H. & Konishi, M. How do owls localize interaurally phase-ambiguous sounds? Proc. Natl. Acad. Sci. USA 95, 6465–6468 (1998).

    Article  CAS  Google Scholar 

  14. Moiseff, A. & Konishi, M. Neuronal and behavioral sensitivity to binaural time differences in the owl. J. Neurosci. 1, 40–48 (1981).

    Article  CAS  Google Scholar 

  15. Mazer, J. How the owl resolves auditory coding ambiguity. Proc. Natl. Acad. Sci. USA 95, 10932–10937 (1998).

    Article  CAS  Google Scholar 

  16. Mazer, J. Integration of Parallel Processing Streams in the Inferior Colliculus of the Barn Owl. Thesis. Caltech (1995).

  17. Saberi, K. et al. Effects of interaural decorrelation on neural and behavioral detection of spatial cues. Neuron 21, 789–798 (1998).

    Article  CAS  Google Scholar 

  18. Saberi, K. An auditory illusion predicted from a weighted cross-correlation model of binaural interaction. Psychol. Rev. 103, 137–142 (1996).

    Article  CAS  Google Scholar 

  19. Saberi, K. Modeling interaural-delay sensitivity to frequency modulation at high frequencies. J. Acoust. Soc. Am. 103, 2551–2564 (1998).

    Article  CAS  Google Scholar 

  20. Konishi, M. How the owl tracks its prey. Am. Sci. 61, 414–424 (1973).

    Google Scholar 

  21. Hafter, E. R. & Shelton, B. R. Counterintuitive reversals in lateralization using rectangularly modulated noise. J. Acoust. Soc. Am. 90, 1901–1907 (1991).

    Article  CAS  Google Scholar 

  22. Grantham, D. W. in Spatial Hearing and Related Phenomena. Handbook of Perception and Cognition: Hearing (ed. Moore, B. C.) 297–345 (Academic, San Diego, 1995).

    Google Scholar 

  23. Takahashi, T. T. & Konishi, M. Selectivity for interaural time difference in the owl's midbrain. J. Neurosci. 6, 3413–3422 (1986).

    Article  CAS  Google Scholar 

  24. Shackleton, T. M., Meddis, R. & Hewitt, M. J. Across-frequency integration in model of lateralization. J. Acoust. Soc. Am. 91, 2276–2279 (1992).

    Article  Google Scholar 

  25. Trahiotis, C. & Stern, R. M. Across-frequency integration in lateralization of complex binaural stimuli. J. Acoust. Soc. Am. 96, 3804–3806 (1994).

    Article  CAS  Google Scholar 

  26. Wagner, H., Takahashi, T. & Konishi, M. Representation of interaural time difference in the central nucleus of the barn owl's inferior colliculus. J. Neurosci. 7, 3105–3116 (1987).

    Article  CAS  Google Scholar 

  27. Keller, C. H. & Takahashi, T. Binaural cross-correlation predicts the responses of neurons in the owl's auditory space map under conditions simulating summing localization. J. Neurosci. 16, 4300–4309 (1996).

    Article  CAS  Google Scholar 

  28. Mori, K. Across-frequency nonlinear inhibition by GABA in processing of ITD. Hear. Res. 111, 22–30 (1997).

    Article  CAS  Google Scholar 

  29. duLac, S. & Knudsen, E. I. Neural maps of head movement vector and speed in the optic tectum of the barn owl. J. Neurophysiol. 63, 131–146 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH (National Institutes of Deafness and Other Communicative Disorders) and a Human Frontier Science Program Fellowship (Y.T.). We thank John C. Middlebrooks, Terry Takahashi and Ervin R. Hafter for commenting on an earlier draft of this paper. We also thank Roian Egnor for comments and assistance during the course of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kourosh Saberi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saberi, K., Takahashi, Y., Farahbod, H. et al. Neural bases of an auditory illusion and its elimination in owls. Nat Neurosci 2, 656–659 (1999). https://doi.org/10.1038/10212

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing