Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reciprocal interactions between CA3 network activity and strength of recurrent collateral synapses

Abstract

In hippocampal slices, synchronous CA3 network activity induced persistent strengthening of active positive-feedback synapses. This altered network operation by increasing probability of future synchronous network activation. Long-term depression of synaptic strength induced by partial blockade of NMDA receptors during synchronous network activity reversed changes in probability of spontaneous network activation. These results suggest that specific network activity patterns selectively alter strength of active synapses. Stable, reversible alterations in network activity can also be effected by corresponding alterations in synaptic strength. These findings confirm the Hebb memory model at the neural-network level and suggest new therapies for pathological patterns of network activity in epilepsy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synchronized network activity increases synaptic strength.
Figure 2: The increase in synaptic strength following bursting is specific for the active positive feedback synapses.
Figure 3: Increasing synaptic strength produces a transition from quiescence to bursting.
Figure 4: Synaptic potentiation resulting from synchronized network activity can be reversed by low frequency stimulation of CA3.
Figure 5: Low frequency stimulation decreases the probability of synchronous network activity.
Figure 6: Low-frequency stimulation of recurrent collaterals decreases the probability of network activation, but has no effect on burst intensity.
Figure 7: .

Similar content being viewed by others

References

  1. Hebb, D. O. The Organization Of Behavior (Wiley, New York, 1949 ).

    Google Scholar 

  2. Brown, T. H., Kairiss, E. W. & Keenan, C. L. Hebbian synapses: biophysical mechanisms and algorithms. Annu. Rev. Neurosci. 13, 475– 511 (1990).

    Article  CAS  Google Scholar 

  3. Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361 , 31–39 (1993).

    Article  CAS  Google Scholar 

  4. Churchland, P. S. & Sejnowski, T. J. in The Computational Brain (eds. Sejnowski, T. J. & Poggio, T.) Vol. 1, 239– 339 (MIT Press, Cambridge, Massachusetts, 1992).

    Google Scholar 

  5. Hopfield, J. J. & Tank, D. W. Computing with neural circuits: A model. Science 233, 625 –633 (1986).

    Article  CAS  Google Scholar 

  6. Zhang, K., Ginzburg, I., McNaughton, B. L. & Sejnowski, T. J. Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J. Neurophysiol. 79, 1017–1044 (1998).

    Article  CAS  Google Scholar 

  7. MacVicar, B. A. & Dudek, F. E. Local circuit interactions in rat hippocampus: interactions between pyramidal cells. Brain Res. 242, 341–344 (1982).

    Article  Google Scholar 

  8. Debanne, D., Gähwiler, B. H. & Thompson, S. M. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hipppocampal slice cultures. J. Physiol. (Lond.) 507.1, 237–247 ( 1998).

    Article  Google Scholar 

  9. Selig, D. K., Nicoll, R. A. & Malenka, R. C. Hippocampal long-term potentiation preserves the fidelity of postsynaptic responses to presynaptic bursts. J. Neurosci. 19, 1236–1246 ( 1999).

    Article  CAS  Google Scholar 

  10. Fisahn, A., Pike, F. G., Buhle, E. H. & Paulsen, O. Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394, 186– 189 (1998).

    Article  CAS  Google Scholar 

  11. Traub, R. D. & Miles, R. in Neuronal Networks Of The Hippocampus Ch. 6 (Cambridge Univ. Press, Cambridge, UK, 1991).

    Book  Google Scholar 

  12. Staley, K. J., Longacher, M., Bains, J. S. & Yee, A. Presynaptic modulation of CA3 network activity. Nat. Neurosci. 1, 201–209 (1998).

    Article  CAS  Google Scholar 

  13. Buzsáki, G. Hippocampal sharp waves: their origin and significance. Brain Res. 398, 242–252 ( 1986).

    Article  Google Scholar 

  14. Traub, R. D. & Wong, R. K. S. Cellular mechanism of neuronal synchronization in epilepsy. Science 216, 745–747 (1982).

    Article  CAS  Google Scholar 

  15. Jefferys, J. G. Mechanisms and experimental models of seizure generation. Curr. Opin. Neurol. 11, 123–127 (1998).

    Article  CAS  Google Scholar 

  16. O'Donovan, M. J. & Chub, N. Population behaviour and self-organization in the genesis of spontaneous rhythmic activity by developing spinal networks. Semin. Cell Dev. Biol. 8, 21–28 (1997).

    Article  CAS  Google Scholar 

  17. Chamberlin, N. D., Traub, R. D. & Dingledine, R. Role of EPSPs in initiation of spontaneous synchronized burst firing in rat hippocampal neurons bathed in high potassium. J. Neurophysiol. 64, 1000–1008 (1990).

    Article  CAS  Google Scholar 

  18. Senn, W., Segev, I. & Tsodyks, M. Reading neuronal synchrony with depressing synapses. Neural Comput. 10, 815– 819 (1998).

    Article  CAS  Google Scholar 

  19. Suppes, T., Kriegstein, A. R. & Prince, D. A. The influence of dopamine on epileptiform burst activity in hippocampal pyramidal neurons. Brain Res. 326, 273–280 (1985).

    Article  CAS  Google Scholar 

  20. Whittington, M. A., Traub, R. D., Faulkner, H. J., Stanford, I. M. & Jefferys, J. G. Recurrent excitatory postsynaptic potentials induced by synchronized fast cortical oscillations. Proc. Natl. Acad. Sci. USA. 94, 12198– 12203 (1997).

    Article  CAS  Google Scholar 

  21. Maeda, E., Kuroda, Y., Robinson, H. P. & Kawana, A. Modification of parallel activity elicited by propagating bursts in developing networks of rat cortical neurons. Eur. J. Neurosci. 10, 488–496 (1998).

    Article  CAS  Google Scholar 

  22. Ben-Ari, Y. & Gho, M. Long-lasting modification of the synaptic properties of rat CA3 hippocampal neurones induced by kainic acid. J. Physiol. (Lond.) 404, 365–384 (1988).

    Article  CAS  Google Scholar 

  23. Schneiderman, J. H., Sterling, C. A. & Luo, R. Hippocampal plasticity following epileptiform bursting produced by GABAA antagonists. Neuroscience 59, 2259–273 (1994).

    Article  Google Scholar 

  24. Huerta, P. T. & Lisman, J. E. Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature 364, 723–725 (1993).

    Article  CAS  Google Scholar 

  25. Rutecki, P. A., Lebeda, F. J. & Johnston, D. Epileptiform activity induced by changes in extracellular potassium in hippocampus. J. Neurophysiol. 54, 1363–1374 (1985).

    Article  CAS  Google Scholar 

  26. Scanziani, M., Debanne, D., Muller, M., Gähwiler, B. H. & Thompson, S. M. Role of excitatory amino acid and GABAB receptors in generation of epileptiform activity in disinhibited hippocampal slice cultures. Neuroscience 61, 823– 832 (1994).

    Article  CAS  Google Scholar 

  27. Xiang, Z. & Brown, T. H. Complex synaptic current waveforms evoked in hippocampal pyramidal neurons by extracellular stimulation of dentate gyrus. J. Neurophysiol. 79, 2475– 2484 (1998).

    Article  CAS  Google Scholar 

  28. Bowery, N. G., Hill, D. R., Hudson, A. L. & Doble, A. (–) Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283, 92–94 (1980).

    Article  CAS  Google Scholar 

  29. Scanziani, M., Capogna, M., Gähwiler, B. H. & Thompson, S. M. Presynaptic inhibition of miniature excitatory synaptic currents by baclofen and adenosine in the hippocampus. Neuron 9, 919–927 (1992).

    Article  CAS  Google Scholar 

  30. Smith, K. L. & Swann, J. W. Long-term depression of perforant path excitatory postsynaptic potentials following synchronous network bursting in area CA3 of immature hippocampus. Neuroscience 89 , 625–630 (1999).

    Article  CAS  Google Scholar 

  31. Bear, M. F. & Malenka, R. C. Synaptic plasticity: LTP and LTD. Curr. Opin. Neurobiol. 4, 389– 399 (1994).

    Article  CAS  Google Scholar 

  32. Fedirchuk, B. et al. Spontaneous network activity transiently depresses synaptic transmission in the embryonic chick spinal cord. J. Neurosci. 19, 2102–2112 (1999).

    Article  CAS  Google Scholar 

  33. Cummings, J. A., Mulkey, R. M., Nicoll, R. A. & Malenka, R. C. Ca2+ signalling requirements for long-term depression in the hippocampus. Neuron 16, 825– 833 (1996).

    Article  CAS  Google Scholar 

  34. Dunwiddie, T. & Lynch, G. Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency. J. Physiol. (Lond.) 276, 353– 367 (1978).

    Article  CAS  Google Scholar 

  35. Miller, K. D. Synaptic economics: competition and cooperation in synaptic plasticity. Neuron 17, 371–374 ( 1996).

    Article  CAS  Google Scholar 

  36. Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and cortical gain control Science 275, 220 –224 (1997).

    Article  CAS  Google Scholar 

  37. Tsodyks, M. & Markram, H. The neural code between neocortical pyramidal cells depends on neurotransmitter release probability. Proc. Natl. Acad. Sci. USA 94, 719– 723 (1997).

    Article  CAS  Google Scholar 

  38. Petersen, C. C., Malenka, R. C., Nicoll, R. A. & Hopfield, J. J. All-or-none potentiation at CA3–CA1 synapses. Proc. Natl. Acad. Sci. USA 95, 4732–4737 (1998).

    Article  CAS  Google Scholar 

  39. Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19, 126–130 (1996).

    Article  CAS  Google Scholar 

  40. Dobrunz, L. E. Long-term potentiation and the computational synapse. Proc. Natl. Acad. Sci. USA 95, 4086–4088 (1998).

    Article  CAS  Google Scholar 

  41. Huang, Y. Y., Colino, A., Selig, D. K. & Malenka, R. C. The influence of prior synaptic activity on the induction of long-term potentiation. Science 255, 730–733 ( 1992).

    Article  CAS  Google Scholar 

  42. Buzsáki, G. Two-stage model of memory trace formation: a role for "noisy" brain states. Neuroscience 31, 551–570 (1989).

    Article  Google Scholar 

  43. Griffith, W. H. & Taylor, L. Sodium valproate decreases synaptic potentiation and epileptiform activity in the hippocampus. Brain Res. 474, 155–164 (1988).

    Article  CAS  Google Scholar 

  44. Stasheff, S. F., Anderson, W. W., Clark, S. & Wilson, W. A. NMDA antagonists differentiate in epileptogenesis from seizure expression in an in vitro model. Science 24, 648– 651 (1989).

    Article  Google Scholar 

  45. Rafiq, A., Zhang, Y. F., DeLorenzo, R. J. & Coulter, D. A. Long-duration self-sustained epileptiform activity in the hippocampal-parahippocampal slice: a model of status epilepticus. J. Neurophysiol. 74, 2028–2042 (1995).

    Article  CAS  Google Scholar 

  46. Claiborne, B. J., Xiang, Z. & Brown, T. H. Hippocampal circuitry complicates analysis of long-term potentiation in mossy fiber synapses. Hippocampus 3 , 115–122 (1993).

    Article  CAS  Google Scholar 

  47. Willams, S. H. & Johnston, D. Kinetic properties of two anatomically distinct excitatory synapses in hippocampal CA3 pyramidal neurons. J. Neurophysiol. 66, 1010– 1020 (1991).

    Article  Google Scholar 

  48. Debanne, D., Guerineau, N. C., Gähwiler, B. H. & Thompson, S. M. Physiology and pharmacology of unitary synaptic connections between pairs of cells in areas CA3 and CA1 of rat hippocampal slice cultures. J. Neurophysiol. 73, 1282–1294 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Staley and Dunwiddie labs for comments on the manuscript. J.S.B. is supported by an International Human Frontier Science Program Fellowship. This work was supported by grants from the National Institutes of Health, The Epilepsy Foundation of America and The Campbell Pediatric Epilepsy Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Staley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bains, J., Longacher, J. & Staley, K. Reciprocal interactions between CA3 network activity and strength of recurrent collateral synapses. Nat Neurosci 2, 720–726 (1999). https://doi.org/10.1038/11184

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11184

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing