Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Non-commutativity in the brain

Abstract

In non-commutative algebra, order makes a difference to multiplication, so that a × bb × a (refs 1, 2). This feature is necessary for computing rotary motion, because order makes a difference to the combined effect of two rotations3,4,5,6. It has therefore been proposed that there are non-commutative operators in the brain circuits that deal with rotations, including motor circuits that steer the eyes, head and limbs4,5,7,8,9,10,11,12,13,14,15, and sensory circuits that handle spatial information12,15. This idea is controversial12,13,16,17,18,19,20,21: studies of eye and head control have revealed behaviours that are consistent with non-commutativity in the brain7,8,9,12,13,14,15, but none that clearly rules out all commutative models17,18,19,20. Here we demonstrate non-commutative computation in the vestibulo-ocular reflex. We show that subjects rotated in darkness can hold their gaze points stable in space, correctly computing different final eye-position commands when put through the same two rotations in different orders, in a way that is unattainable by any commutative system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Why an ideal VOR must be non-commutative.
Figure 2: Computer simulation of a VOR model19 in which all neural processing is commutative.
Figure 3: The actual VOR is non-commutative.

Similar content being viewed by others

References

  1. Hamilton, W. R. Lectures on Quaternions (Hodges, Dublin, (1853).

    Google Scholar 

  2. Schutz, B. Geometrical Methods of Mathematical Physics (Cambridge Univ. Press, Cambridge, (1980).

    Book  Google Scholar 

  3. McCarthy, J. M. An Introduction to Theoretical Kinematics (North-Holland, Amsterdam, (1990).

    Google Scholar 

  4. Westheimer, G. Kinematics of the eye. J. Opt. Soc. Am. 47, 967–974 (1957).

    Article  ADS  CAS  Google Scholar 

  5. Tweed, D. & Vilis, T. Implications of rotational kinematics for the oculomotor system in three dimensions. J. Neurophysiol. 58, 832–849 (1987).

    Article  CAS  Google Scholar 

  6. Carpenter, R. H. S. The Movements of the Eyes (Pion, London, (1988).

    Google Scholar 

  7. Tweed, D. & Vilis, T. Geometric relations of eye position and velocity vectors during saccades. Vision Res. 30, 111–127 (1990).

    Article  CAS  Google Scholar 

  8. Crawford, J. D. & Vilis, T. Axes of eye rotation and Listing's law during rotation of the head. J.Neurophysiol. 65, 407–423 (1991).

    Article  CAS  Google Scholar 

  9. Minken, A. W. H., van Opstal, A. J. & Van Gisbergen, J. A. M. Three-dimensional analysis of strongly curved saccades elicited by double-step stimuli. Exp. Brain Res. 93, 521–533 (1993).

    Article  CAS  Google Scholar 

  10. Hestenes, D. Invariant body kinematics I. Saccadic and compensatory eye movements. Neural Netw. 7, 65–77 (1994).

    Article  Google Scholar 

  11. Hestenes, D. Invariant body kinematics: II. Reaching and neurogeometry. Neural. Netw. 7, 79–88 (1994).

    Article  Google Scholar 

  12. Tweed, D., Misslisch, H. & Fetter, M. Testing models of the oculomotor velocity-to-position transformation. J. Neurophysiol. 72, 1425–1429 (1994).

    Article  CAS  Google Scholar 

  13. Smith, M. A. & Crawford, J. D. Neural control of rotational kinematics within realistic vestibuloocular coordinate systems. J. Neurophysiol. 80, 2295–2315 (1998).

    Article  CAS  Google Scholar 

  14. Tweed, D. Athree-dimensional model of the human eye-head saccadic system. J. Neurophysiol. 77, 654–666 (1997).

    Article  CAS  Google Scholar 

  15. Henriques, D. Y. P., Klier, E. M., Smith, M. A., Lowy, D. & Crawford, J. D. Gaze centered remapping of remembered visual space in an open-loop pointing task. J. Neurosci. 18, 1583–1594 (1998).

    Article  CAS  Google Scholar 

  16. Van Opstal, A. J., Hepp, K., Hess, B. J. M., Straumann, D. & Henn, V. Two- rather than three-dimensional representation of saccades in monkey superior colliculus. Science 252, 1313–1315 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Schnabolk, C. & Raphan, T. Modeling three-dimensional velocity-to-position transformation in oculomotor control. J. Neurophysiol. 71, 623–638 (1994).

    Article  CAS  Google Scholar 

  18. Straumann, D., Zee, D. S., Solomon, D., Lasker, A. G. & Roberts, D. Transient torsion during and after saccades. Vision Res. 35, 3321–3334 (1995).

    Article  CAS  Google Scholar 

  19. Raphan, T. In Three-dimensional Kinematics of Eye, Head and Limb Movements (eds Fetter, M., Haslwanter, T., Misslisch, H. & Tweed, D.) 359–376 (Harwood, Amsterdam, (1997).

    Google Scholar 

  20. Raphan, T. Modeling control of eye orientation in three dimensions. I. Role of muscle pulleys in determining saccadic trajectory. J. Neurophysiol. 79, 2653–2667 (1998).

    Article  CAS  Google Scholar 

  21. Quaia, C. & Optican, L. M. Commutative saccadic generator is sufficient to control a 3-d ocular plant with pulleys. J. Neurophysiol. 79, 3197–3215 (1998).

    Article  CAS  Google Scholar 

  22. Miller, J. M., Demer, J. L. & Rosenbaum, A. L. Effect of transposition surgery on rectus muscle paths by magnetic resonance imaging. Ophthalmology 100, 475–487 (1993).

    Article  CAS  Google Scholar 

  23. Demer, J. L., Miller, J. M. & Poukens, V. Surgical implications of the rectus extraocular muscle pulleys. J. Pediatr. Ophthalmol. Strabismus 33, 208–218 (1996).

    CAS  PubMed  Google Scholar 

  24. Robinson, D. A. Oculomotor unit behavior in the monkey. J. Neurophysiol. 35, 393–404 (1970).

    Article  Google Scholar 

  25. Glasauer, S. Interaction of semicircular canals and otoliths in the processing structure of the subjective zenith. Ann. NY Acad. Sci. 656, 847–849 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Merfeld, D. M. Modeling the vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt. Exp. Brain Res. 106, 123–134 (1995).

    Article  CAS  Google Scholar 

  27. Robinson, D. A. Amethod of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans. Biomed. Eng. 10, 137–145 (1963).

    CAS  PubMed  Google Scholar 

  28. Koch, C. Biophysics of Computation: Information Processing in Single Neurons 471–473 (Oxford Univ. Press, New York, (1999).

  29. Schultheis, L. W. & Robinson, D. A. Directional plasticity of the vestibuloocular reflex in the cat. Ann. NY Acad. Sci. 374, 504–512 (1981).

    Article  ADS  CAS  Google Scholar 

  30. Peng, G. C., Baker, J. F. & Peterson, B. W. Dynamics of directional plasticity in the human vertical vestibulo-ocular reflex. J. Vestib. Res. 4, 453–460 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. M. Broussard, J. D. Crawford, J. Dichgans, C. E. Hawkins, J. A. Sharpe and T. Vilis for comments on the manuscript. This work was supported by the MRC of Canada and the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tweed, D., Haslwanter, T., Happe, V. et al. Non-commutativity in the brain. Nature 399, 261–263 (1999). https://doi.org/10.1038/20441

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/20441

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing