Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans

Abstract

The signalling protein Wnt regulates transcription factors containing high-mobility-group (HMG) domains to direct decisions on cell fate during animal development1. In Caenorhabditis elegans, the HMG-domain-containing repressor POP-1 distinguishes the fates of anterior daughter cells from their posterior sisters throughout development2,3, and Wnt signalling downregulates POP-1 activity in one posterior daughter cell called E (refs 2, 4, 5). Here we show that the genes mom-4 and lit-1 are also required to downregulate POP-1, not only in E but also in other posterior daughter cells. Consistent with action in a common pathway, mom-4 and lit-1 exhibit similar mutant phenotypes and encode components of the mitogen-activated protein kinase (MAPK) pathway that are homologous to vertebrate transforming-growth-factor-β-activated kinase (TAK1) and NEMO-like kinase (NLK), respectively. Furthermore, MOM-4 and TAK1 bind related proteins that promote their kinase activities. We conclude that a MAPK-related pathway cooperates with Wnt signal transduction to downregulate POP-1 activity. These functions are likely to be conserved in vertebrates, as TAK1 and NLK can downregulate HMG-domain-containing proteins related to POP-1 (ref. 6).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: POP-1 asymmetries in wild-type and lit-1 mutant embryos.
Figure 2: mom-4 and tap-1 encode proteins homologous to TAK1 and TAB1, respectively.
Figure 3: TAP-1 binds to MOM-4 and promotes MOM-4 MAP3K activity.
Figure 4: Alignment of LIT-1 and NLK.

Similar content being viewed by others

References

  1. Cadigan, K. M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Lin, R., Thompson, S. & Priess, J. R. pop-1 encodes an HMG box protein required for the specification of a mesoderm precursor in early C. elegans embryos. Cell 83, 599–609 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Lin, R., Hill, R. & Priess, J. R. POP-1 and anterior-posterior fate decision in C. elegans embryos. Cell 92, 229–240 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Rocheleau, C. E. et al. Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90, 707–716 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Thorpe, C. J., Schlesinger, A., Carter, J. C. & Bowerman, B. Wnt signaling polarizes an early C. elegans blastomere to distinguish endoderm from mesoderm. Cell 90, 695–705 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Ishitani, T. et al. The TAK1–NLK–MAPK-related pathway antagonizes signalling between β-catenin and transcription factor-TCF. Nature 399, 798–802 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Goldstein, B. Induction of gut in Caenorhabditis elegans embryos. Nature 357, 255–257 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Goldstein, B. An analysis of the response to gut induction in the C. elegans embryo. Development 121, 1221–1236 (1995).

    Google Scholar 

  9. Brunner, E., Peter, O., Schweizer, L. & Basler, K. pangolin encodes a Lef-1 homolog that acts downstream of Armadillo to transduce the Wingless signal. Nature 385, 829–833 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Riese, J. et al. LEF-1, a nuclear factor coordinating signaling inputs from wingless and decanpentaplegic. Cell 88, 777–787 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. van de Wetering, M. et al. Armadillo co-activates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 788–799 (1997).

    Article  Google Scholar 

  12. Bienz, M. TCF: transcriptional activator or repressor? Curr. Opin. Cell Biol. 10, 366–372 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Brannon, M., Gomperts, M., Sumoy, L., Moon, R. T. & Kimelman, D. Aβ-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev. 11, 2359–2370 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cavallo, R. A. et al. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395, 604–608 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Roose, J. et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395, 608–612 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Kaletta, T., Schnabel, H. & Schnabel, R. Binary specification of the embryonic lineage in Caenorhabditis elegans. Nature 390, 294–298 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Yamaguchi, K. et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 270, 2008–2011 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Shibuya, H. et al. TAB1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science 272, 1179–1182 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Fire, A., Montgomery, M. K., Kostas, S. A., Driver, S. E. & Mello, C. C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans : extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brott, B. K., Pinsky, B. A. & Erikson, R. L. Nlk is a murine protein kinase related to Erk/MAP kinases and localized in the nucleus. Proc. Natl Acad. Sci. USA 95, 963–968 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choi, K. W. & Benzer, S. Rotation of photoreceptor clusters in the developing Drosophila eye requires the nemo gene. Cell 78, 125–136 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Epstein, H. F. & Shakes, D. C. Caenorhabditis elegans: Modern Biological Analysis of an Organism(Academic, San Diego, 1995).

    Google Scholar 

  25. Avery, L., Horvitz, H. R. Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans. Neuron 3, 473–485 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Bowerman, B., Eaton, B. A. & Priess, J. R. skn-1, a maternally expressed gene required to specify the fate of ventral blastomers in the early C. elegans embryo. Cell 68, 1061–1075 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Priess, J. R. & Thomson, J. N. Cellular interactions in early C. elegans embryos. Cell 34, 85–100 (1987).

    Google Scholar 

  28. Fields, S. & Sternglanz, R. The two-hybrid system: an assay for protein–protein interactions. Trends Genet. 8, 286–292 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Willis for assistance with POP-1 antibody staining; D. Miller, R. Lin and J. Ahringer for providing antibodies; the C. elegans Genetics center, funded by the NIH National Center for Research Resources, for providing strains; H. and R. Schnabel for the t1534 lit-1 allele; and B. Draper and C. Doe for helpful comments on the manuscript. B.B. is supported by an NIH R01 grant and M.M. by an NIH Genetics training grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Bowerman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meneghini, M., Ishitani, T., Carter, J. et al. MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Nature 399, 793–797 (1999). https://doi.org/10.1038/21666

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21666

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing