Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Binding sites for permeant ions in the channel of NMDA receptors and their effects on channel block

Abstract

We report the presence of binding sites for permeant monovalent cations at the internal and external entrances to the channel of NMDA receptors. We measured the effects of changing internal cesium (Cs+) and external sodium (Na+) concentrations on the channel-blocking kinetics of the adamantane derivatives IEM-1754 and IEM-1857. Binding of Na+, or of Cs+ after it permeates the channel, to sites at the external channel entrance prevents blockers from entering the channel. Binding of Na+ to a blocked channel prevents blocker unbinding. Cs+ binding to a site at the internal channel entrance prevents IEM-1754 from occupying the deeper of its two sites of block. The results show the critical effects of permeant ions on the kinetics, affinity and voltage-dependence of channel blockers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NMDA-activated single-channel current amplitudes recorded in each combination of solutions.
Figure 2: Measurement of effect of permeant cations on k+,app of the IEM drugs.
Figure 3: Voltage dependence of effects of permeant cations on k+,app of the IEM drugs.
Figure 4: Dependence on Na+o of τb and k-,app of IEM-1857.
Figure 5: Effect of Cs+i on τb of IEM-1754 at negative voltages.
Figure 6: Effects of permeant cations on the k-,app of IEM-1754.
Figure 7: Schematics of the channel of NMDA receptors during block by the IEM drugs.

Similar content being viewed by others

References

  1. Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 ( 1993).

    Article  CAS  Google Scholar 

  2. Malenka, R. C. & Nicoll, R. A. NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci. 16, 521–527 (1993).

    Article  CAS  Google Scholar 

  3. Zorumski, C. F. & Olney, J. W. Excitotoxic neuronal damage and neuropsychiatric disorders. Pharmacol. Ther. 39, 145–162 (1993).

    Article  Google Scholar 

  4. Mayer, M. L., Westbrook., G. L. & Guthrie, P. B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurons. Nature 309, 261–263 (1984).

    Article  CAS  Google Scholar 

  5. Nowak,L.,. Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307, 462–465 (1984).

    Article  CAS  Google Scholar 

  6. Johnson, J. W. & Ascher, P. Voltage-dependent block by intracellular Mg2+ of N-methyl-D-aspartate- activated channels. Biophys. J. 57, 1085–1090 (1990).

    Article  CAS  Google Scholar 

  7. Ruppersberg, J. P., v. Kitzing, E. & Schoepfer, R. The mechanism of magnesium block of NMDA receptors. Sem. Neurosci. 6, 87–96 (1994).

    Article  CAS  Google Scholar 

  8. Subramaniam, S., Donevan, S. D. & Rogawski, M. A. Hydrophobic interactions of n-alkyl diamines with the N-methyl-D-aspartate receptor: voltage-dependent and -independent blocking sites. Mol. Pharmacol. 45, 117– 124 (1994).

    CAS  PubMed  Google Scholar 

  9. Zarei, M. M. & Dani, J. A. ructure basis for explaining open-channel blockade of the NMDA receptor. J. Neurosci. 15, 1446–1454 (1995).

    Article  CAS  Google Scholar 

  10. Antonov, S. M. & Johnson, J. W. Voltage-dependent interaction of open-channel blocking molecules with gating of NMDA receptors in rat cortical neurons. J. Physiol. 493, 425–445 (1996).

    Article  CAS  Google Scholar 

  11. Li-Smerin, Y. & Johnson, J. W. Kinetics of the block by intracellular Mg2+ of the NMDA-activated channel in cultured rat neurons . J. Physiol. 491, 121– 135 (1996).

    Article  CAS  Google Scholar 

  12. Raditsch, M. et al. Polyamine spider toxins and mammalian N-methyl-D-aspartate receptors. Eur. J. Biochem. 240, 416– 426 (1996).

    Article  CAS  Google Scholar 

  13. Sobolevsky, A. & Koshelev, S. Two blocking sites of amino-adamantane derivatives in open N-methyl-D-aspartate channels. Biophys. J. 74, 1305– 1319 (1998).

    Article  CAS  Google Scholar 

  14. Woodhull, A. M. Ionic blockade of sodium channel in nerve. J. Gen. Physiol. 61, 687–708 (1973).

    Article  CAS  Google Scholar 

  15. Burnashev, N. et al. Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science 257 , 1415–1419 (1992).

    Article  CAS  Google Scholar 

  16. Kuner, T., Wollmuth, L. P., Karlin, A., Seeburg, P. H. & Sakmann, B. Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines. Neuron 17, 343–352 ( 1996).

    Article  CAS  Google Scholar 

  17. Wollmuth, L. P., Kuner, T. & Sakmann, B. Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg2+. J. Physiol. 506, 13– 32 (1998).

    Article  CAS  Google Scholar 

  18. Armstrong, C. M. & Binstock, L. Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride. J. Gen. Physiol. 48, 859–872 (1965).

    Article  CAS  Google Scholar 

  19. MacDonald, J. F. et al. Actions of ketamine, phencyclidine and MK-801 on NMDA receptor currents in cultured mouse hippocampal neurons. J. Physiol. 432, 483–508 (1991).

    Article  CAS  Google Scholar 

  20. Chen, H. -S. V. & Lipton, S. A. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism. J. Physiol. 499, 27–46 (1997).

    Article  CAS  Google Scholar 

  21. Zarei, M. M. & Dani, J. A. Ionic permeability characteristics of the N-methyl-D-aspartate receptor channel. J. Gen. Physiol. 103, 231–248 ( 1994).

    Article  CAS  Google Scholar 

  22. Premkumar, L. S. & Auerbach, A. Identification of a high affinity divalent cation binding site near the entrance of the NMDA receptor channel. Neuron 16, 869– 880 (1996).

    Article  CAS  Google Scholar 

  23. Sharma, G. & Stevens, C. F. Interactions between two divalent ion binding sites in N-methyl-D-aspartate receptor channels. Proc. Natl Acad. Sci. USA 93, 14170– 14175 (1996).

    Article  CAS  Google Scholar 

  24. Dang, T. X. & McCleskey, E. W. Ion channel selectivity through stepwise changes in binding affinity. J. Gen. Physiol. 111, 185–193 (1998).

    Article  CAS  Google Scholar 

  25. Kiss, L., Immke, D., LoTurco, J. & Korn, S. J. The interaction of Na+ and K+ in voltage-gated potassium channels . J. Gen. Physiol. 111, 195– 206 (1998).

    Article  CAS  Google Scholar 

  26. Antonov, S. M. et al. Novel adamantane derivatives act as blockers of open ligand-gated channels and as anticonvulsants. Mol. Pharmacol. 47 , 558–567 (1995).

    CAS  PubMed  Google Scholar 

  27. Howe, J. R., Colquhoun, D. & Cull-Candy, S. G. On the kinetics of large-conductance glutamate-receptor ion channels in rat cerebellar granular neurons. Proc. R. Soc. Lond. B 233, 407–422 ( 1988).

    Article  CAS  Google Scholar 

  28. Gibb, A. J. & Colquhoun, D. Activation of N-methyl-D-aspartate receptors by L-glutamate in cells dissociated from adult rat hippocampus. J. Physiol. 456, 143–179 (1992).

    Article  CAS  Google Scholar 

  29. Kleckner, N. W. & Pallotta, B. S. Burst kinetics of single NMDA receptor currents in cell-attached patches from rat brain cortical neurons in culture. J. Physiol. 486, 411 –426 (1995).

    Article  CAS  Google Scholar 

  30. Stern, P., Béhé, P., Schoepfer, R. & Colquhoun, D. Single-channel conductances of NMDA receptors expressed from cloned cDNAs: comparison with native receptors. Proc. R. Soc. Lond. B 250, 271–277 (1992).

    Article  CAS  Google Scholar 

  31. Stern, P., Cik M., Colquhoun, D. & Stephenson, F. A. Single channel properties of cloned NMDA receptors in a human cell line: comparison with results from Xenopus oocytes. J. Physiol. 476, 391 –397 (1994).

    Article  CAS  Google Scholar 

  32. Neher, E. & Steinbach, J. H. Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J. Physiol. 277, 153–176 (1978).

    Article  CAS  Google Scholar 

  33. Neyton, J. & Miller, C. Potassium blocks barium permeation through a calcium-activated potassium channel. J. Gen. Physiol. 92, 549–567 ( 1988).

    Article  CAS  Google Scholar 

  34. Ascher, P. & Nowak, L. The role of divalent cations in the N-methyl-D-aspartate responses of mouse central neurones in culture. J. Physiol. 399, 247- 266 ( 1988).

    Article  CAS  Google Scholar 

  35. Kuner, T. & Schoepfer, R. Multiple structural elements determine subunit specificity of Mg2+ block in NMDA receptor channels . J. Neurosci. 16, 3549– 3556 (1996).

    Article  CAS  Google Scholar 

  36. Villarroel, A., Burnashev, N. & Sakmann, B. Dimensions of the narrow portion of a recombinant NMDA receptor channel. Biophys. J. 68, 866– 875 (1995).

    Article  CAS  Google Scholar 

  37. Wollmuth, L. P., Kuner, T., Seeburg, P.H. & Sakmann, B. Differential contribution of the NR1- and NR2A-subunits to the selectivity filter of recombinant NMDA receptor channels. J. Physiol. 491, 779– 797 (1996).

    Article  CAS  Google Scholar 

  38. Momiyama, A., Feldmeyer, D. & Cull-Candy, S. G. Identification of a native low-conductance NMDA channel with reduced sensitivity to Mg2+ in rat central neurones. J. Physiol. 494, 479–492 (1996).

    Article  CAS  Google Scholar 

  39. Wyllie, D. et al. Whole-cell and single-channel currents from recombinant NMDA NR1/2D receptors expressed in Xenopus oocytes. J. Physiol. 491, 135P–136P ( 1996).

    Google Scholar 

  40. Zhong, J., Russell, S. L., Pritchett, D. B., Molinoff, P.B. & Williams, K. Expression of mRNAs encoding subunits of the N-methyl-D-aspartate receptor in cultured cortical neurons. Mol. Pharmacol. 45, 846–853 (1994).

    CAS  PubMed  Google Scholar 

  41. Kutsuwada, T. et al. Molecular diversity of the NMDA receptor channel. Nature 358, 36–41 ( 1992).

    Article  CAS  Google Scholar 

  42. Monyer, H. et al. Heteromeric NMDA receptors: Molecular and functional distinction of subtypes. Science 256, 1217– 1221 (1992).

    Article  CAS  Google Scholar 

  43. Ishii, T. et al. Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J. Biol. Chem. 268, 2836 –2843 (1993).

    CAS  PubMed  Google Scholar 

  44. Yamakura, T., Mori, H., Masaki, H., Shimoji, K. & Mishina, M. Different sensitivities of NMDA receptor channel subtypes to non-competitive antagonists. NeuroReport 4, 687–690 (1993).

    Article  CAS  Google Scholar 

  45. Lynch, D. R. et al. Pharmacological characterization of heterodimeric NMDA receptors composed of NR 1a and 2B subunits: differences with receptors formed from NR 1a and 2A. J. Neurochem. 64, 1462– 1468 (1995).

    Article  CAS  Google Scholar 

  46. Raditsch, M. et al. Subunit-specific block of cloned NMDA receptors by argiotoxin 636 . FEBS Lett. 324, 62– 66 (1993).

    Article  Google Scholar 

  47. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patch. Pfluger Arch. 391, 85–100 ( 1981).

    Article  CAS  Google Scholar 

  48. Colquhoun, D. & Sigworth, F. J. in Single- Channel Recording (eds Sakmann, B. & Neher, E.) 483– 587 (Plenum, New York, 1995).

  49. Sigworth, F. J. & Sine, S. M. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys. J. 52, 1047–1054 (1987).

    Article  CAS  Google Scholar 

  50. Weast, R. C. & Lide, D. R. (eds) CRC Handbook of Chemistry and Physics. (CRC Press, Boca Raton, Florida, 1996).

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grants MH45817, MH00944 and MH45156. We thank Jacques Neyton, Philippe Ascher, Tom Blanpied, Jim Dilmore and Yingying Li-Smerin for comments on the manuscript, Jim Dilmore for help with figures and Juliann Jaumotte for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon W. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonov, S., Gmiro, V. & Johnson, J. Binding sites for permeant ions in the channel of NMDA receptors and their effects on channel block. Nat Neurosci 1, 451–461 (1998). https://doi.org/10.1038/2167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/2167

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing