Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide

Abstract

The endogenous cannabinoid receptor agonist anandamide1 is a powerful vasodilator of isolated vascular preparations2,3,4, but its mechanism of action is unclear. Here we show that the vasodilator response to anandamide in isolated arteries is capsaicin-sensitive and accompanied by release of calcitonin-gene-related peptide (CGRP). The selective CGRP-receptor antagonist 8-37 CGRP (ref. 5), but not the cannabinoid CB1 receptor blocker SR141716A (ref. 7), inhibited the vasodilator effect of anandamide. Other endogenous (2-arachidonylglycerol, palmitylethanolamide) and synthetic (HU 210, WIN 55,212-2, CP 55,940) CB1 and CB2 receptor agonists1 could not mimic the action of anandamide. The selective ‘vanilloid receptor’ antagonist capsazepine6,7 inhibited anandamide-induced vasodilation and release of CGRP. In patch-clamp experiments on cells expressing the cloned vanilloid receptor (VR1)8, anandamide induced a capsazepine-sensitive current in whole cells and isolated membrane patches. Our results indicate that anandamide induces vasodilation by activating vanilloid receptors on perivascular sensory nerves and causing release of CGRP. The vanilloid receptor may thus be another molecular target for endogenous anandamide, besides cannabinoid receptors, in the nervous and cardiovascular systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of capsaicin and the CGRP receptor antagonist 8-37 CGRP on relaxations induced by anandamide (AEA) and acetylcholine (ACh) in rat and guinea-pig arteries.
Figure 2: Release of CGRP from sensory nerves and effects of anandamide (AEA) and CGRP on cAMP levels in the rat hepatic artery.
Figure 3: Relaxant effects of endogenous and synthetic cannabinoid receptor agonists in rat hepatic and guinea-pig basilar arteries.
Figure 4: Effect of the vanilloid receptor antagonist capsazepine on relaxations elicited by anandamide, methanandamide and capsaicin in rat and guinea-pig arteries.
Figure 5: Anandamide activates the cloned vanilloid receptor (VR1).

References

  1. Pertwee, R. G. Pharmacology of cannabinoid CB1and CB2receptors. Pharmacol. Ther. 74, 129–180 (1997).

    CAS  PubMed  Google Scholar 

  2. Plane, F., Holland, M., Waldron, G. J., Garland, C. J. & Boyle, J. P. Evidence that anandamide and EDHF act via different mechanisms in rat isolated mesenteric arteries. Br. J. Pharmacol. 121, 1509–1511 (1997).

    Article  CAS  Google Scholar 

  3. Zygmunt, P. M.et al. Studies on the effects of anandamide in rat hepatic artery. Br. J. Pharmacol. 122, 1679–1686 (1997).

    Article  CAS  Google Scholar 

  4. Wagner, J. A., Varga, K., Jarai, Z. & Kunos, G. Mesenteric vasodilation mediated by endothelial anandamide receptors. Hypertension 33, 429–434 (1999).

    Article  CAS  Google Scholar 

  5. Han, S.-P., Naes, L. & Westfall, T. C. Inhibition of periarterial nerve stimulation-induced vasodilation of the mesenteric arterial bed by CGRP (8-37) and CGRP receptor desensitization. Biochem. Biophys. Res. Commun. 168, 786–791 (1990).

    Article  CAS  Google Scholar 

  6. Bevan, S.et al. Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin. Br. J. Pharmacol. 107, 544–552 (1992).

    Article  CAS  Google Scholar 

  7. Szallasi, A. & Blumberg, P. M. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol. Rev. 51, 159–212 (1999).

    CAS  PubMed  Google Scholar 

  8. Caterina, M. J.et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Devane, W. A.et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Deutsch, D. G.et al. Production and physiological actions of anandamide in the vasculature of the rat kidney. J. Clin. Invest. 100, 1538–1546 (1997).

    Article  CAS  Google Scholar 

  11. Di Marzo, V., De Petrocellis, L., Sepe, N. & Buono, A. Biosynthesis of anandamide and related acylethanolamides in mouse J774 macrophages and N18neuroblastoma cells. Biochem. J. 316, 977–984 (1996).

    Article  CAS  Google Scholar 

  12. Varga, K., Lake, K. D., Huangfu, D., Guyenet, P. G. & Kunos, G. Mechanism of the hypotensive action of anandamide in anesthetized rats. Hypertension 28, 682–686 (1996).

    Article  CAS  Google Scholar 

  13. Wagner, J. A.et al. Activation of peripheral CB1cannabinoid receptors in haemorrhagic shock. Nature 390, 518–521 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Varga, K., Wagner, J. A., Bridgen, D. T. & Kunos, G. Platelet- and macrophage-derived endogenous cannabinoids are involved in endotoxin-induced hypotension. FASEB J. 12, 1035–1044 (1998).

    Article  CAS  Google Scholar 

  15. Ishac, E. J. N.et al. Inhibition of exocytotic noradrenaline release by presynaptic cannabinoid CB1receptors on peripheral sympathetic nerves. Br. J. Pharmacol. 118, 2023–2028 (1996).

    Article  CAS  Google Scholar 

  16. Sugiura, T.et al. Detection of an endogenous cannabimimetic molecule 2-arachidonoylglycerol, and cannabinoid CB1 receptor mRNA in human vascular cells: is 2-arachidonoylglycerol a possible vasomodulator? Biochem. Biophys. Res. Commun. 243, 838–843 (1998).

    Article  CAS  Google Scholar 

  17. White, R. & Hiley, C. R. The actions of some cannabinoid receptor ligands in the rat isolated mesenteric artery. Br. J. Pharmacol. 125, 533–541 (1998).

    Article  CAS  Google Scholar 

  18. Kawasaki, H., Takasaki, K., Saito, A. & Goto, K. Calcitonin gene-related peptide acts as a novel vasodilator neurotransmitter in mesenteric resistance vessels of the rat. Nature 335, 164–167 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Edvinsson, L., Ekman, R., Jansen, I., McCulloch, J. & Uddman, R. Calcitonin gene-related peptide and cerebral blood vessels: distribution and vasomotor effects. J. Cereb. Blood Flow Metab. 7, 720–728 (1987).

    Article  CAS  Google Scholar 

  20. Pratt, P. F., Hillard, C. J., Edgemond, W. S. & Campbell, W. B. N -arachidonylethanolamide relaxation of bovine coronary artery is not mediated by CB1 cannabinoid receptor. Am. J. Physiol. 274, H375–H381 (1998).

    CAS  PubMed  Google Scholar 

  21. White, R. & Hiley, C. R. The actions of the cannabinoid receptor antagonist, SR 141716A, in the rat isolated mesenteric artery. Br. J. Pharmacol. 125, 689–696 (1998).

    Article  CAS  Google Scholar 

  22. Di Marzo, V.et al. Interactions between synthetic vanilloids and the endogenous cannabinoid system. FEBS Lett. 436, 449–454 (1998).

    Article  CAS  Google Scholar 

  23. Zygmunt, P. M., Edwards, G., Weston, A. H., Davis, S. C. & Högestätt, E. D. Effects of cytochrome P450 inhibitors on EDHF-mediated relaxation in the rat hepatic artery. Br. J. Pharmacol. 118, 1147–1152 (1996).

    Article  CAS  Google Scholar 

  24. Petersson, J., Zygmunt, P. M., Jönsson, P. & Högestätt, E. D. Characterization of endothelium-dependent relaxation in guinea pig basilar artery—effects of hypoxia and role of cytochrome P450mono-oxygenase. J. Vasc. Res. 35, 285–294 (1998).

    Article  CAS  Google Scholar 

  25. Chyb, S., Raghu, P. & Hardie, R. Polyunsaturated fatty acids activate the drosophila light-sensitive channels TRP and TRPL. Nature 397, 255–259 (1999).

    Article  ADS  CAS  Google Scholar 

  26. Hofmann, T.et al. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397, 259–263 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Olivera, B. M., Miljanich, G. P., Ramachandran, J. & Adams, M. E. Calcium channel diversity and neurotransmitter release: the omega-conotoxins and omega-agatoxins. Annu. Rev. Biochem. 63, 823–867 (1994).

    Article  CAS  Google Scholar 

  28. Geppert, M.et al. Neurexin Ia is a major α-latrotoxin receptor that cooperates in α-latrotoxin action. J. Biol. Chem. 273, 1705–1710 (1998).

    Article  CAS  Google Scholar 

  29. Tominaga, M.et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543 (1998).

    Article  CAS  Google Scholar 

  30. Zygmunt, P. M., Grundemar, L. & Högestätt, E. D. Endothelium-dependent relaxation resistant to Nω-nitro-L-arginine in the rat hepatic artery and aorta. Acta Physiol. Scand. 152, 107–114 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Medical Research Council, the Medical Faculty of Lund (ALF) and the Crafoords Foundation (E.D.H.), the National Institutes of Health and the McKnight Foundation for Neuroscience (H.C. and D.J.) and the Ministero dell Universita e dela Ricerca Scientifica (V.D.M.). P.M.Z. was supported by the Swedish Society for Medical Research and the Swedish Medical Research Council. J.P. was supported by the Medical Faculty of Lund (ALF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward D. Högestätt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zygmunt, P., Petersson, J., Andersson, D. et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452–457 (1999). https://doi.org/10.1038/22761

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22761

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing