Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation

Abstract

The TGF-β superfamily of proteins regulates many different biological processes, including cell growth, differentiation and embryonic pattern formation1,2,3. TGF-β-like factors signal across cell membranes through complexes of transmembrane receptors known as type I and type II serine/threonine-kinase receptors, which in turn activate the SMAD signalling pathway4,5. On the inside of the cell membrane, a receptor-regulated class of SMADs are phosphorylated by the type-I-receptor kinase. In this way, receptors for different factors are able to pass on specific signals along the pathway: for example, receptors for bone morphogenetic protein (BMP) target SMADs 1, 5 and 8, whereas receptors for activin and TGF-β target SMADs 2 and 3. Phosphorylation of receptor-regulated SMADs induces their association with Smad4, the ‘common-partner’ SMAD, and stimulates accumulation of this complex in the nucleus, where it regulates transcriptional responses. Here we describe Smurf1, a new member of the Hect family of E3 ubiquitin ligases. Smurf1 selectively interacts with receptor-regulated SMADs specific for the BMP pathway in order to trigger their ubiquitination and degradation, and hence their inactivation. In the amphibian Xenopus laevis, Smurf1 messenger RNA is localized to the animal pole of the egg; in Xenopus embryos, ectopic Smurf1 inhibits the transmission of BMP signals and thereby affects pattern formation. Smurf1 also enhances cellular responsiveness to the Smad2 (activin/TGF-β) pathway. Thus, targeted ubiquitination of SMADs may serve to control both embryonic development and a wide variety of cellular responses to TGF-β signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Smurf1 encodes an E3 ubiquitin ligase expressed in early Xenopus development.
Figure 2: Smurf1 expression decreases the steady-state level of Smad1 and Smad5.
Figure 3: hSmurf1 induces Smad1 turnover and ubiquitination.
Figure 4: Interaction of Smurf1 and Smads.
Figure 5: Smurf1 dorsalizes ventral mesoderm and neuralizes ectoderm of Xenopus embryos.
Figure 6: Smurf1 alters embryonic cell competence to respond to Smad1 and Smad2.

Similar content being viewed by others

References

  1. Kingsley, D. M. The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 8, 133–146 (1994).

    Article  CAS  Google Scholar 

  2. Moses, H. L. & Serra, R. Regulation of differentiation by TGF-beta. Curr. Opin. Genet. Dev. 6, 581–586 (1996).

    Article  CAS  Google Scholar 

  3. Harland, R. & Gerhart, J. Formation and Function of Spemann's organizer. Annu. Rev. Cell Biol. 13, 611–667 (1997).

    Article  CAS  Google Scholar 

  4. Massague, J. TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753–791 (1998).

    Article  CAS  Google Scholar 

  5. Whitman, M. Smads and early developmental signaling by the TGFβ superfamily. Genes Dev. 12, 2445–2462 (1998).

    Article  CAS  Google Scholar 

  6. Bartel, P. & Fields, S. Analyzing protein-protein interactions using two-hybrid system. Methods Enzymol. 254, 241–263 (1995).

    Article  CAS  Google Scholar 

  7. Huibregtse, J. M., Scheffner, M., Beaudenon, S. & Howley, P. M. Afamily of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl Acad. Sci. USA 92, 2563–2567 (1995). [Published erratum appears in Proc. Natl Acad. Sci. USA 92, 5249 (1995). ]

    Google Scholar 

  8. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  9. Nefsky, B. & Beach, D. Pub1 acts as an E6-AP-like protein ubiquitin ligase in the degradation of cdc25. EMBO J. 15, 1301–1312 (1996).

    Article  CAS  Google Scholar 

  10. Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495–505 (1993).

    Article  CAS  Google Scholar 

  11. Hein, C., Springael, J., Volland, C., Haguenauer-Tsapis, R. & Andre, B. NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol. Microbiol. 18, 77–87 (1995).

    Article  CAS  Google Scholar 

  12. Nalefski, E. A. & Falke, J. J. The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci. 5, 2375–2390 (1996).

    Article  CAS  Google Scholar 

  13. Plant, P. J., Yeger, H., Staub, O., Howard, P. & Rotin, D. The C2 domain of the ubiquitin protein ligase Nedd4 mediates Ca2+-dependent plasma membrane localization. J. Biol. Chem. 272, 32329–32336 (1997).

    Article  CAS  Google Scholar 

  14. Rotin, D. WW (WWP) domains: from structure to function. Curr. Top. Microbiol. Immunol. 228, 115–133 (1998).

    CAS  PubMed  Google Scholar 

  15. Fainsod, A., Steinbeisser, H. & De Robertis, E. M. On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J. 13, 5015–5025 (1994).

    Article  CAS  Google Scholar 

  16. Hemmati-Brivanlou, A. & Thomsen, G. H. Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. Dev. Genet. 17, 78–89 (1995).

    Article  CAS  Google Scholar 

  17. Nishimatsu, S. & Thomsen, G. H. Ventral mesoderm induction and patterning by BMP heterodimers in Xenopus embryos. Mech. Dev. 74, 75–88 (1997).

    Article  Google Scholar 

  18. Thomsen, G. H. Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP-2/4 receptor. Development 122, 2359–2366 (1996).

    CAS  PubMed  Google Scholar 

  19. Fenteany, G.et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268, 726–731 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Treier, M., Staszewski, L. M. & Bohmann, D. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell 78, 787–798 (1994).

    Article  CAS  Google Scholar 

  21. Macias-Silva, M., Hoodless, P. A., Tang, S. J., Buchwald, M. & Wrana, J. L. Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2. J. Biol. Chem. 273, 25628–25636 (1998).

    Article  CAS  Google Scholar 

  22. Hoodless, P. A.et al. Dominant-negative Smad2 mutants inhibit activin/Vg1 signaling and disrupt axis formation in Xenopus. Dev. Biol. 207, 364–379 (1999).

    Article  CAS  Google Scholar 

  23. Hemmati-Brivanlou, A. & Melton, D. Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 88, 13–17 (1997).

    Article  CAS  Google Scholar 

  24. Wilson, P. A., Lagna, G., Suzuki, A. & Hemmati-Brivanlou, A. Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development 124, 3177–3184 (1997).

    CAS  PubMed  Google Scholar 

  25. Suzuki, A., Chang, C., Yingling, J. M., Wang, X. F. & Hemmati-Brivanlou, A. Smad5 induces ventral fates in Xenopus embryos. Dev. Biol. 184, 402–405 (1997).

    Article  CAS  Google Scholar 

  26. Lagna, G., Hata, A., Hemmati-Brivanlou, A. & Massague, J. Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways. Nature 383, 832–836 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Candia, A. F.et al. Cellular interpretation of multiple TGF-beta signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development 124, 4467–4480 (1997).

    CAS  PubMed  Google Scholar 

  28. Eppert, K.et al. MADR2 maps to 18q21 and encodes a TGFβ regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86, 543–552 (1996).

    Article  CAS  Google Scholar 

  29. Ward, C. L., Omura, S. & Kopito, R. R. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83, 121–127 (1995).

    Article  CAS  Google Scholar 

  30. Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin) (North Holland, Amsterdam, 1967).

    Google Scholar 

Download references

Acknowledgements

We thank P. Gergen, G. Golling, N. Hollingsworth and B. Li for reagents and advice on the yeast two-hybrid system; D. Rotin and D. Bohmann for reagents; D. Rotin for helpful discussions; and our colleagues who provided useful comments on the manuscript. This work was supported by the MRC and the NCIC with funds from the Terry Fox run (to J.L.W.), and the NIH, NSF and a Cancer Classic Award from the University Medical School (to G.H.T.). P.K. is a recipient of an MRC Studentship and J.L.W. is an MRC Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald H. Thomsen.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, H., Kavsak, P., Abdollah, S. et al. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400, 687–693 (1999). https://doi.org/10.1038/23293

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23293

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing