Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP

Abstract

Rap1 is a small, Ras-like GTPase that was first identified as a protein that could suppress the oncogenic transformation of cells by Ras1. Rap1 is activated by several extracellular stimuli2,3,4,5,6,7 and may be involved in cellular processes such as cell proliferation8, cell differentiation4, T-cell anergy2 and platelet activation7. At least three different second messengers, namely diacylglycerol, calcium and cyclic AMP5,6,7,8,9 are able to activate Rap1 by promoting its release of the guanine nucleotide GDP and its binding to GTP. Here we report that activation of Rap1 by forskolin and cAMP occurs independently of protein kinase A (also known as cAMP-activated protein kinase). We have cloned the gene encoding a guanine-nucleotide-exchange factor (GEF) which we have named Epac (exchange protein directly activated by cAMP). This protein contains a cAMP-binding site and a domain that is homologous to domains of known GEFs for Ras and Rap1. Epac binds cAMP in vitro and exhibits in vivo and in vitro GEF activity towards Rap1. cAMP strongly induces the GEF activity of Epac towards Rap1 both in vivo and in vitro. We conclude that Epac is a GEF for Rap1 that is regulated directly by cAMP and that Epac is a new target protein for cAMP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: cAMP-induced Rap1 activation is not mediated by PKA.
Figure 2: Sequence of Epac.
Figure 3: cAMP binds directly to the cAMP-binding domain of Epac.
Figure 4: cAMP induces the activation of Epac in NIH3T3-A14 cells.

Similar content being viewed by others

References

  1. Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y. & Noda, M. Aras-related gene with transformation suppressor activity. Cell 56, 77–84 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Boussiotis, V. A., Freeman, G. J., Berezovskaya, A., Barber, D. L. & Nadler, L. M. Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Science 278, 124–128 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Reedquist, K. A. & Bos, J. L. Costimulation through CD28 suppresses T cell receptor-dependent activation of the Ras-like small GTPase Rap1 in human T lymphocytes. J. Biol. Chem. 273, 4944–4949 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. York, R. D. et al. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392, 622–626 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. M'Rabet, L. et al. Activation of Rap1 in human neutrophils. Blood 92, 2133–2140 (1998).

    CAS  PubMed  Google Scholar 

  6. Zwartkruis, F. J. T., Wolthuis, R. M. F., Nabben, N. M. J. M., Franke, B. & Bos, J. L. Extracellular signal-regulated activation of Rap1 fails to interfere in Ras effector signalling. EMBO J. 17, 5905–5912 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Franke, B., Akkerman, J. W. & Bos, J. L. Rapid Ca2+-mediated activation of Rap1 in human platelets. EMBO J. 16, 252–259 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Altschuler, D. L. & Ribeiro-Neto, F. Mitogenic and oncogenic properties of the small G protein Rap1b. Proc. Natl Acad. Sci. USA 95, 7475–7479 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Altschuler, D. L., Peterson, S. N., Ostrowski, M. C. & Lapetina, E. G. Cyclic AMP-dependent activation of Rap1b. J. Biol. Chem. 270, 10373–10376 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Vossler, M. R. et al. cAMP activates MAP kinase and Elk 1 through a B-raf- and Rap1 dependent pathway. Cell 89, 74–82 (1997).

    Article  Google Scholar 

  11. Singh, T. J. et al. Characterization of a cyclic AMP-resistant Chinese hamster ovary cell mutant containing both wild-type and mutant species of type I regulatory subunit of cyclic AMP-dependent protein kinase. J. Biol. Chem. 260, 13927–13933 (1985).

    CAS  PubMed  Google Scholar 

  12. Ebinu, J. O. et al. RasGRP, a Ras guanyl nucelotide-releasing protein with calcium- and diacylglycerol-binding motifs. Science 280, 1082–1086 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Zagotta, W. N. & Siegelbaum, S. A. Structure and function of cyclic nucleotide-gated channels. Annu. Rev. Neurosci. 19, 235–263 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Shabb, J. B., Ng, L. & Corbin, J. D. One amino acid change produces a high affinity cGMP-binding site in cAMP-dependent protein kinase. J. Biol. Chem. 265, 16031–16034 (1990).

    CAS  PubMed  Google Scholar 

  15. Gotoh, T. et al. Identification of Rap1 as a target for the Crk SH3 domain-binding guanine nucleotide-releasing factor C3G. Mol. Cell. Biol. 15, 6746–6753 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boriack-Sjodin, P. A., Margarit, S. M., Bar-Sagi, D. & Kuriyan, J. The structural basis of the activation of Ras by Sos. Nature 394, 337–343 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Ponting, C. P. & Bork, P. Pleckstrins repeat performance: a novel domain in G-protein signaling? Trends Biochem. Sci. 21, 245–256 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Axelrod, J. D., Miller, J. R., Shulman, J. M., Moon, R. T. & Perrimon, N. Differential recruitment of dishevelled provides signaling specificty in the planar cell polarity and wingless signaling pathways. Genes Dev. 12, 2610–2622 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van den Berghe, N., Cool, R. H., Horn, G. & Wittinghofer, A. Biochemical characterization of C3G: an exchange factor that discriminates between Rap1 and Rap2 and is not inhibited by Rap1A(S17N). Oncogene 15, 845–850 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Dremier, S. et al. Activation of cyclic AMP-dependent kinase is required but may not be sufficient to mimic cyclic AMP-dependent DNA synthesis and thyroglobulin expression in dog thyroid cells. Mol. Cell. Biol. 17, 6717–6726 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cook, S. J., Rubinfeld, B., Albert, I. & McCormick, F. RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts. EMBO J. 12, 3475–3485 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wolthuis, R. M. et al. Activation of the small GTPase Ral in platelets. Mol. Cell. Biol. 18, 2486–2491 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rannels, S. R. & Corbin, J. D. Using analogs to study selectivity and cooperativity of cyclin nucleotide binding sites. Methods Enzymol. 99, 168–175 (1983).

    Article  CAS  PubMed  Google Scholar 

  24. Verheijen, M. G. H. & Defize, L. H. K. Parathyroid hormone inhibits mitogen-activated protein kinase activation in osteosarcoma cells via a protein kinase A-dependent pathway. Endocrinology 136, 3331–3337 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Herberg, F. W., Zimmermann, B., McGlone, M. & Taylor, S. S. Importance of the A-helix of the catalytic subunit of cAMP-dependent protein kinase for stability and for orienting subdomains at the cleft interface. Protein Sci. 6, 569–579 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank F. W. Herberg for the GST-RIα subunit of PKA, M. Gottesman for CHO10001/10248 cells, B. M. T. Burgering for discussions and for reading the manuscript and the rest of our colleagues for continuous support and discussions. J.deR. and M.H.G.V. were supported by the Council of Earth and Life Sciences of the Netherlands Organization for Scientific Research, F.J.T.Z. by the Dutch Cancer Society and R.H.C. by the EG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes L. Bos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Rooij, J., Zwartkruis, F., Verheijen, M. et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396, 474–477 (1998). https://doi.org/10.1038/24884

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24884

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing