Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mesolimbic dopaminergic neurones in the rotational model of nigrostriatal function

Abstract

AT least some of the symptoms of Parkinson's disease are believed to result from the degeneration of nigrostriatal dopaminergic neurones which normally innervate the striatum. Parkinsonian patients have an abnormally low concentration of dopamine in this region of the basal ganglia1,2, and parkinsonian symptoms can be alleviated by the dopamine precursor L-dopa3. A quantitative animal model which has proved useful in assessing the potential therapeutic value of drugs in the treatment of parkinsonism was described some years ago by Ungerstedt and Arbuthnott4. Rats, in which the nigrostriatal pathway has been destroyed unilaterally by 6-hydroxydopamine (6-OHDA), were shown to rotate towards the lesioned side when injected with drugs, such as amphetamine, which release dopamine from neurones in the brain, and towards the unlesioned side when injected with L-dopa and dopamine agonists5,6. This contralateral rotation has been attributed to supersensitivity of the denervated striatal dopamine receptors5,6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ehringer, H., and Hornykiewicz, O., Klin. Wschr., 38, 1236–1239 (1960).

    Article  CAS  Google Scholar 

  2. Bernheimer, H., Birkmayer, W., and Hornykiewicz, O., Klin. Wschr., 41, 465–469 (1963).

    Article  CAS  Google Scholar 

  3. Cotzias, G. C., van Woert, M. H., and Schiffer, L. M., New Engl. J. Med., 276, 374–379 (1967).

    Article  CAS  Google Scholar 

  4. Ungerstedt, U., and Arbuthnott, G. W., Brain Res., 24, 485–493 (1970).

    Article  CAS  Google Scholar 

  5. Ungerstedt, U., Acta physiol. scand., Suppl., 367, 69–93 (1971).

    Article  CAS  Google Scholar 

  6. Von Voigtlander, P. F., and Moore, K. E., Neuropharmacology, 12, 451–462 (1973).

    Article  CAS  Google Scholar 

  7. Ungerstedt, U., Acta physiol. scand., Suppl. 367, 1–48 (1971).

    Article  CAS  Google Scholar 

  8. Pijnenburg, A. J. J., Woodruff, G. N., and Van Rossum, J. M., Brain Res., 59, 289–302 (1973).

    Article  CAS  Google Scholar 

  9. Pijnenburg, A. J. J., Honig, W. M. M., and Van Rossum, J. M., Psychopharmacologia, 41, 87–95 (1975).

    Article  CAS  Google Scholar 

  10. Kelly, P. H., Seviour, P. W., and Iversen, S. D., Brain Res., 94, 507–522 (1975).

    Article  CAS  Google Scholar 

  11. Kelly, P. H., Miller, R. J., and Neumeyer, J. L., Eur. J. Pharmac., 35, 85–92 (1976).

    Article  CAS  Google Scholar 

  12. Kelly, P. H., and Iversen, L. L., Psychopharmacologia, 45, 221–224 (1975).

    Article  CAS  Google Scholar 

  13. Iversen, S. D., and Kelly, P. H., in Chemical Tools in Catecholamine Research, 1 (edit. by Jonsson, G., Malmfors, T., and Sachs, C.), 327–333 (North-Holland-American Elsevier, New York, 1975).

    Google Scholar 

  14. Woodruff, G. N., Kelly, P. H., and Elkhawad, A. O., Psychopharmacology, 41, 195–198 (1976).

    Article  Google Scholar 

  15. Elkhawad, A. O., and Woodruff, G. N., Br. J. Pharmac, 54, 107–114 (1975).

    Article  CAS  Google Scholar 

  16. Kelly, P. H., Brain Res., 100, 163–169 (1975).

    Article  CAS  Google Scholar 

  17. Pellegrino, L. J., and Cushman, A. J., A Stereotaxic Atlas of the Rat Brain (Appleton-Century-Crofts, New York, 1968).

    Google Scholar 

  18. Glowinski, J., and Iversen, L. L., J. Neurochem., 13, 655–669 (1966).

    Article  CAS  Google Scholar 

  19. Horn, A. S., Cuello, A. C., and Miller, R. J., J. Neurochem., 22, 265–270 (1974).

    Article  CAS  Google Scholar 

  20. Moore, K. E., and Phillipson, O. T., J. Neurochem., 25, 289–294 (1975).

    Article  CAS  Google Scholar 

  21. Cuello, A. C., Hiley, R., and Iversen, L. L., J. Neurochem., 21, 1337–1340 (1973).

    Article  CAS  Google Scholar 

  22. Breese, G. R., and Traylor, T. D., Br. J. Pharmac., 42, 88–99 (1971).

    Article  CAS  Google Scholar 

  23. Ungerstedt, U., Butcher, L. L., Butcher, S. G., Anden, N-E., and Fuxe, K., Brain Res., 14, 461–471 (1969).

    Article  CAS  Google Scholar 

  24. Fuxe, K., et al., J. Pharmac., (Paris), 6, 117–129 (1975).

    CAS  Google Scholar 

  25. Powell, E. W., and Leman, R. B., Brain Res., 105, 389–403 (1976).

    Article  CAS  Google Scholar 

  26. Rioch, D. M., J. comp. Neurol., 53, 319–388 (1931).

    Article  Google Scholar 

  27. Smith, O. C., J. comp. Neurol., 51, 65–127 (1930).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KELLY, P., MOORE, K. Mesolimbic dopaminergic neurones in the rotational model of nigrostriatal function. Nature 263, 695–696 (1976). https://doi.org/10.1038/263695a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/263695a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing