Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Persistence of prolonged light-induced conductance change in arthropod photoreceptors on recovery from anoxia

Abstract

FOR a wide variety of photoreceptor cells, it has been shown that light alters the conductance of the cell membrane, giving rise to the voltage response of the cell1–4. It is generally accepted that the primary event in the photo-excitation process is a light-induced isomerisation of the photopigment chromophore. The mechanisms linking this isomerisation to the conductance change remain unknown. It has been suggested recently that the transduction process may depend on oxidative metabolism. Intracellular recordings from photoreceptors of the honeybee (A pis)5, horseshoe crab (Limulus)5 and barnacle (Balanus)—observed recently by one of the authors (A.M.) in collaboration with R. Lantz—have shown that the light-induced conductance increase during illumination can be reversibly blocked by anoxia. Neither the site nor the mechanism of the action of anoxia on the transduction process is known. The light-induced spectral transitions of the photopigments are known, however, to take place under a variety of conditions including anoxia6–10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Toyoda, J., Nosaki, H., and Tomita, T., Vision Res., 9, 453–463 (1969).

    Article  CAS  Google Scholar 

  2. Fuortes, M. G. F., J. Physiol., Lond., 148, 14–28 (1959).

    Article  CAS  Google Scholar 

  3. Millecchia, R., and Mauro, A., J. gen. Physiol., 54, 331–351 (1969).

    Article  CAS  Google Scholar 

  4. Brown, H. M., Hagiwara, S., Koike, H., and Meech, R. W., J. Physiol., Lond., 208, 385–413 (1970).

    Article  CAS  Google Scholar 

  5. Baumann, F., and Mauro, A., Nature new Biol., 244, 146–148 (1973).

    Article  ADS  CAS  Google Scholar 

  6. Hillman, P., Dodge, F. A., Hochstein, S., Knight, B. W., and Minke, B., J. gen. Physiol., 62, 77–86 (1973).

    Article  CAS  Google Scholar 

  7. Smith, T. B., and Brown, J. E., Nature, 212, 1217–1219 (1966).

    Article  ADS  Google Scholar 

  8. Abrahamson, E. W., and Ostroy, S. E., Progr. Biophys., 17, 179–215 (1967).

    Article  CAS  Google Scholar 

  9. Cone, R. A., and Pak, W. L., in Handbook of Sensory Physiology, 1 (edit. by Loewenstein, W. R.), 345–365 (Springer-Verlag, New York, 1971).

    Google Scholar 

  10. Hagins, W. A., and McGaughy, R. E., Science, 157, 813–816 (1967).

    Article  ADS  CAS  Google Scholar 

  11. Hochstein, S., Minke, B., and Hillman, P., J. gen. Physiol., 62, 105–128 (1973).

    Article  CAS  Google Scholar 

  12. Nolte, J., Brown, J. E., and Smith, T. G., Science, 162, 677–679 (1968).

    Article  ADS  CAS  Google Scholar 

  13. Muijser, H., Leutscher-Hazelhoff, J. T., Stavanga, D. G., and Kuiper, J. W., Nature, 254, 520–522 (1975).

    Article  ADS  CAS  Google Scholar 

  14. Cosens, D., and Briscoe, D., J. Insect Physiol., 18, 627–632 (1972).

    Article  Google Scholar 

  15. Ostroy, S. E., Wilson, M., and Pak, W. L., Biochem. biophys. Res. Commun., 59, 960–966 (1974).

    Article  CAS  Google Scholar 

  16. Minke, B., Wu, C.-F., and Pak, W. L., J. comp. Physiol., 98, 345–355 (1975).

    Article  Google Scholar 

  17. Brown, H. M., and Cornwall, M. C., J. Physiol., Lond., 248, 579–593 (1975).

    Article  CAS  Google Scholar 

  18. Minke, B., Wu, C.-F., and Pak, W. L., Nature, 258, 84–87 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Wu, C.-F., and Pak, W. L., J. gen. Physiol., 66, 149–168 (1975).

    Article  CAS  Google Scholar 

  20. Pak, W. L., Grossfield, J., and White, N. V., Nature, 222, 351–354 (1969).

    Article  ADS  CAS  Google Scholar 

  21. Brown, H. M., Meech, R. W., and Thomas, R. C., Biophys. J., 16, no. 2, part 2, 33a (1976).

    Google Scholar 

  22. Goldsmith, T. H., and Bernard, G. D., in Physiology of Insecta, 2 (edit. by Rockstein, M), 165–272 (Academic, New York, 1974).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

WONG, F., MAURO, A., WU, CF. et al. Persistence of prolonged light-induced conductance change in arthropod photoreceptors on recovery from anoxia. Nature 264, 661–664 (1976). https://doi.org/10.1038/264661a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/264661a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing