Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Calcium effects on gap junction structure and cell coupling

Abstract

PROTOPLASMIC molecules of low molecular weight are known to travel freely across the boundaries between most neighbouring cells through small intercellular channels generally thought to be at the intramembranous particles of gap junctions1–3. The permeability of the channels can be decreased to a complete interruption of cell communication by a variety of treatments2–10. Most of these treatments raise the concentration of ionised calcium, [Ca2+], in the cytoplasm8, suggesting that calcium may be the uncoupling agent in both vertebrate9 and invertebrate cells2,8. In some systems glutaraldehyde fixation has also been shown to produce uncoupling3; however, this type of uncoupling does not seem to be triggered by calcium10. In parallel with functional uncoupling reversible structural changes have been described in gap junctions of crayfish characterised by an increase in tightness and regularity of particle aggregation and a decrease in junctional thickness and particle size10. These changes, interpreted as reflecting conformational rearrangements in the protein framework of the channels resulting in channel obliteration, were recently confirmed in the rat11 although in the latter, functional uncoupling was not measured electrophysiologically, but only presumed on the basis of reasonable comparative arguments. It remains uncertain whether or not the changes in both the gap junction structure and the cell coupling are due to a direct action of calcium on the junctional membranes. We show here that the junctional change is indeed a calcium effect, triggered by [Ca2+] as low as 5×10−7 M.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Peracchia, C. Trends Biochem. Sci. 2, 26–30 (1977).

    Article  CAS  Google Scholar 

  2. Loewenstein, W. R. Cold Spring Harb. Symp. quant. Biol. 40, 49–63 (1975).

    Article  Google Scholar 

  3. Bennett, M. V. L. Fed Proc. 32, 65–75 (1973).

    CAS  PubMed  Google Scholar 

  4. Barr, L., Dewey, M. M. & Berger, W. J. gen. Physiol. 48, 797–823 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dreifuss, J. J., Girardier, L. & Forssmann, W. G. Pfluegers Arch. Ges. Physiol. 292, 13–33, (1966).

    Article  CAS  Google Scholar 

  6. Loewenstein, W. R., Nakas, M. & Socolar, S. J. J. gen. Physiol. 50, 1865–1891 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Asada, Y. & Bennett, M. V. L. J. Cell Biol. 49, 159–172 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rose, B. & Loewenstein, W. R. Nature 254, 250–252 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. DeMello, W. C. J. Physiol., Lond. 250, 231–245 (1975).

    Article  CAS  Google Scholar 

  10. Peracchia, C. & Dulhunty, A. F. J. Cell Biol. 70, 419–439 (1976).

    Article  CAS  PubMed  Google Scholar 

  11. Peracchia, C. J. Cell Biol. 72, 628–641 (1977).

    Article  CAS  PubMed  Google Scholar 

  12. Chalcroft, J. P. & Bullivant, S. J. Cell Biol. 47, 49–60 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Benedetti, E. L. et al. Biochim. biophys. Acta 457, 353–384 (1976).

    Article  CAS  PubMed  Google Scholar 

  14. Papaconstantinou, J. Science 156, 338–346 (1967).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Lowry, O. H., Passonneau, J. U., Hasselberger, F. H. & Schulz, D. W. J. biol. Chem. 239, 18–30 (1964).

    CAS  PubMed  Google Scholar 

  16. Blaustein, M. P. Rev. Physiol. Biochem. Pharmac. 70, 33–82 (1974).

    Article  CAS  Google Scholar 

  17. Peracchia, C. J. Cell Biol. 57, 66–76 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chaberek, S. & Martell, A. E. Organic Sequestering Agents (Wiley, New York, 1959).

    Google Scholar 

  19. Délèze, J. & Loewenstein, W. R. J. Membrane Biol. 28, 71–86 (1976).

    Article  Google Scholar 

  20. Rose, B., Simpson, I. & Loewenstein, W. R. Nature 267, 625–627 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Weingart, R. J. Physiol., Lond. 264, 341–365 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Turin, L. & Warner, A. Nature 270, 56–57 (1976).

    Article  ADS  Google Scholar 

  23. Caspar, D. L. D., Goodenough, D. A., Makowski, L. & Phillips, W. C. J. Cell Biol. 74, 605–628 (1977).

    Article  CAS  PubMed  Google Scholar 

  24. Makowski, L., Caspar, D. L. D., Phillips, W. C. & Goodenough, D. A. J. Cell Biol. 74, 629–645 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ashley, C. C., Caldwell, P. C., Lowe, A. G., Richards, C. D. & Schirmer, H. J. Physiol., Lond. 179, 32P–33P (1965).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

PERACCHIA, C. Calcium effects on gap junction structure and cell coupling. Nature 271, 669–671 (1978). https://doi.org/10.1038/271669a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/271669a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing