Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons

Abstract

Using the polyamine toxin philanthotoxin, which selectively blocks calcium-permeable AMPA receptors, we show that synaptic transmission onto single hippocampal interneurons occurs by afferent-specific activation of philanthotoxin-sensitive and -insensitive AMPA receptors. Calcium-permeable AMPA receptors are found exclusively at synapses from mossy fibers. In contrast, synaptic responses evoked by stimulation of CA3 pyramidal neurons are mediated by calcium-impermeable AMPA receptors. Both pathways converge onto single interneurons and can be discriminated with Group II mGluR agonists. Thus, single interneurons target AMPA receptors of different subunit composition to specific postsynaptic sites, providing a mechanism to increase the synapse-specific computational properties of hippocampal interneurons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rectification properties and PhTx sensitivity of EPSCs on stratum lucidum interneurons.
Figure 2: PhTx blocks EPSCs in a use-dependent manner.
Figure 3: Calcium-permeable AMPA receptors are targeted to mossy-fiber synapses.
Figure 4: Single stratum lucidum interneurons express both calcium-permeable and calcium-impermeable AMPA receptors.

Similar content being viewed by others

References

  1. Hume, R. I., Dingledine, R. & Heinemann, S. F. Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253, 1028–1031 (1991).

    Article  CAS  Google Scholar 

  2. Hollmann, M., Hartley, M. & Heinemann, S. Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science 252, 851–853 (1991).

    Article  CAS  Google Scholar 

  3. Higuchi, M. et al. RNA editing of AMPA receptor subunit GluRB: a base-paired intron-exon structure determines position and efficacy. Cell 75, 1361–1370, (1993).

    Article  CAS  Google Scholar 

  4. Howe, J. R. Homomeric and heteromeric ion channels formed from kainate type subunits GluR6 and KA2 have very small, but different unitary conductances. J. Neurophysiol. 76, 510–519 (1996).

    Article  CAS  Google Scholar 

  5. Swanson, G. T., Kamboj, S. K. & Cull-Candy, S. G. Single channel properties of recombinant AMPA receptors depend on RNA editing, splice variation and subunit composition. J. Neurosci. 17, 58–69 ( 1997).

    Article  CAS  Google Scholar 

  6. Bowie, D. & Mayer, M. L. Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15, 453– 462 (1995).

    Article  CAS  Google Scholar 

  7. Koh, D. S., Burnashev, N. & Jonas, P. Block of native Ca2+-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. J. Physiol. (Lond.) 486, 305–312 (1995).

    Article  CAS  Google Scholar 

  8. Kamboj, S. K., Swanson, G. T. & Cull-Candy, S. G. Intracellular spermine confers rectification on rat calcium-permeable AMPA and kainate receptors. J. Physiol. (Lond.) 486, 297–303 ( 1995).

    Article  CAS  Google Scholar 

  9. Donevan, S. D. & Rogawski, M. A. Intracellular polyamines mediate inward rectification of Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Proc. Natl. Acad. Sci. USA 92, 9298–9302 (1995).

    Article  CAS  Google Scholar 

  10. McBain, C. J. & Dingledine, R. Heterogenity of synaptic glutamate receptors on CA3 stratum-radiatum interneurones of rat hippocampus. J. Physiol. (Lond.) 462, 373–392 (1993).

    Article  CAS  Google Scholar 

  11. Jonas, P., Racca, C., Sakmann, B., Seeburg, P. H. & Monyer H. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12, 1281 –1289 (1994).

    Article  CAS  Google Scholar 

  12. Geiger, J.R. et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193– 204 (1995).

    Article  CAS  Google Scholar 

  13. Isa, T., Iino, M. & Ozawa, S. Spermine blocks synaptic transmission mediated by Ca2+-permeable AMPA receptors. Neuroreport 7, 689– 692 (1996).

    Article  CAS  Google Scholar 

  14. Washburn, M. S., Numberger, M., Zhang, S. & Dingledine, R. Differential dependence on GluR2 expression of three characteristic features of AMPA receptors. J. Neurosci. 17, 9393– 9406 (1997).

    Article  CAS  Google Scholar 

  15. Geiger, J. R., Lubke, J., Roth, A., Frotscher, M. & Jonas, P. Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron 18, 1009–1023 (1997).

    Article  CAS  Google Scholar 

  16. Jonas, P. & Burnashev, N. Molecular mechanisms controlling calcium entry through AMPA-type glutamate receptor channels. Neuron 15, 987–990 ( 1995).

    Article  CAS  Google Scholar 

  17. Vissavajjhala, P. et al. Synaptic distribution of the AMPA-GluR2 subunit and its colocalization with calcium-binding proteins in rat cerebral cortex: an immunohistochemical study using a GluR2-specific monoclonal antibody. Exp. Neurol. 142, 296–312 ( 1996).

    Article  CAS  Google Scholar 

  18. Gulyás, A. I., Miettinen, R., Jacobowitz, D. M. & Freund, T. F. Calretinin is present in non-pyramidal cells of the rat hippocampus-I. A new type of neuron specifically associated with the mossy fibre system. Neuroscience 48, 1–27 ( 1992).

    Article  Google Scholar 

  19. Frotscher, M. Mossy fibres form synapses with identified pyramidal basket cells in the CA3 region of the guinea-pig hippocampus: a combined Golgi-electron microscope study. J. Neurocytol. 14, 245– 259 (1985).

    Article  CAS  Google Scholar 

  20. Acsády, L., Kamondi, A., Sík, A., Freund, T. F. & Buzsáki, G. GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J. Neurosci. 18, 3386–3403 (1998).

    Article  Google Scholar 

  21. Maccaferri, G., Tóth, K. & McBain, C. J. Target-specific expression of presynaptic mossy fiber plasticity. Science 279, 1368– 1370 (1998).

    Article  CAS  Google Scholar 

  22. Gulyás, A. I. et al. Hippocampal pyramidal cells excite inhibitory neurons through a single release site. Nature 366, 683–687 (1993).

    Article  Google Scholar 

  23. Rubio, M. E. & Wenthold, R. J. Glutamate receptors are selectively targeted to postsynaptic sites in neurons. Neuron 18 , 939–950 (1997).

    Article  CAS  Google Scholar 

  24. Landsend, A. S. et al. Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J. Neurosci. 17, 834–842 ( 1997).

    Article  CAS  Google Scholar 

  25. Isa, T., Itazawa, S., Iino, M., Tsuzuki, K. & Ozawa, S. Distribution of neurones expressing inwardly rectifying and Ca2+-permeable AMPA receptors in rat hippocampal slices. J. Physiol. (Lond.) 491, 719– 733 (1996).

    Article  CAS  Google Scholar 

  26. Washburn, M. S. & Dingledine, R. Block of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by polyamines and polyamine toxins. J. Pharmacol. Exp. Ther. 278, 669–678 (1996).

    CAS  PubMed  Google Scholar 

  27. Blaschke, M. et al. A single amino-acid determines the subunit-specific spider toxin block of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate kainate receptor channels. Proc. Natl. Acad. Sci. USA 90, 6528–6528 (1993).

    Article  CAS  Google Scholar 

  28. Brackley, P. T., Bell, D. R., Choi, D. K., Nakanishi, K. & Usherwood, P. N. Selective antagonism of native and cloned kainate and NMDA receptors by polyamine-containing toxins. J. Pharmacol. Exp. Ther. 266, 1573–1580 (1993).

    CAS  PubMed  Google Scholar 

  29. Herlitze, S. et al. Argiotoxin detects molecular differences in AMPA receptor channels. Neuron 10, 1131– 1140 (1993).

    Article  CAS  Google Scholar 

  30. Iino, M., Koike, M., Isa, T. & Ozawa, S. Voltage-dependent blockage of Ca2+-permeable AMPA receptors by joro spider toxin in cultured rat hippocampal neurones. J. Physiol. (Lond.) 496, 431–437 (1996).

    Article  CAS  Google Scholar 

  31. Bähring, R. & Mayer, M. L. An analysis of philanthotoxin block for recombinant rat GluR6(Q) glutamate receptor channels J. Physiol. (Lond.) 509, 635– 650 (1998).

    Article  Google Scholar 

  32. Gu, Y. P. & Huang, L. Y. Block of kainate receptor channels by Ca2+ in isolated spinal trigeminal neurons of rat. Neuron 6, 777–784 ( 1991).

    Article  CAS  Google Scholar 

  33. Otis, T. S., Raman, I. M. & Trussell, L. O. AMPA receptors with high Ca2+-permeability mediate synaptic transmission in the avian auditory pathway. J. Physiol.(Lond.) 482, 309–315 (1995).

    Article  CAS  Google Scholar 

  34. Shigemoto, R. et al. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J. Neurosci. 17, 7503–7522 (1997).

    Article  CAS  Google Scholar 

  35. Manzoni, O. J., Castillo, P. E. & Nicoll, R. A. Pharmacology of metabotropic glutamate receptors at the mossy fiber synapses of the guinea pig hippocampus. Neuropharmacology 34, 965–971 ( 1995).

    Article  CAS  Google Scholar 

  36. Kamiya, H., Shinozaki, H. & Yamamoto C. Activation of metabotropic glutamate receptor type 2/3 suppresses transmission at rat hippocampal mossy fibre synapses. J. Physiol. (Lond.) 493, 447–455 (1996).

    Article  CAS  Google Scholar 

  37. Vignes, M. & Collingridge, G. L. The synaptic activation of kainate receptors. Nature 388, 179– 182 (1997).

    Article  CAS  Google Scholar 

  38. Castillo, P. E., Malenka, R. C. & Nicoll, R. A. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 388, 182–186 (1997).

    Article  CAS  Google Scholar 

  39. Paternain, A. V., Morales, M. & Lerma, J. Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons. Neuron 14, 185–189 (1995).

    Article  CAS  Google Scholar 

  40. Spruston, N., Lubke, J. & Frotscher, M. Interneurons in the stratum lucidum of the rat hippocampus: an anatomical and electrophysiological characterization. J. Comp. Neurol. 385, 427–440 ( 1997).

    Article  CAS  Google Scholar 

  41. Nusser, Z., Sieghart, W., Benke, D., Fritschy, J. M. & Somogyi, P. Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells. Proc. Natl. Acad. Sci. USA 93, 11939– 11944 (1996).

    Article  CAS  Google Scholar 

  42. Nusser, Z., Sieghart, W. & Somogyi, P. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci. 18, 1693–1703 (1998).

    Article  CAS  Google Scholar 

  43. Racca, C., Catania, M. V., Monyer, H. & Sakmann, B. Expression of AMPA-glutamate receptor B subunit in rat hippocampal GABAergic neurons. Eur. J. Neurosci. 8, 1580– 1590 (1996).

    Article  CAS  Google Scholar 

  44. Hsu, M. & Buzsáki, G. Vulnerability of mossy fiber targets in the rat hippocampus to forebrain ischemia. J. Neurosci . 13, 3964–3979 ( 1993).

    Article  CAS  Google Scholar 

  45. Maglóczky, Z. & Freund, T. F. Delayed cell death in the contralateral hippocampus following kainate injection into the CA3 subfield. Neuroscience 66, 847– 860 (1995).

    Article  Google Scholar 

  46. Rozov, A., Zilberter, Y., Wollmuth, L. P. & Burnashev, N. Facilitation of currents through Ca2+-permeable AMPA receptor channels by activity-dependent relief from polyamine block. J. Physiol. (Lond.) 511, 361–377 (1998).

    Article  CAS  Google Scholar 

  47. Mahanty, N. & Sah, P. Calcium-permeable AMPA receptors mediate long term potentiation in interneurons of the amygdala. Nature 394, 683–687 ( 1998).

    Article  CAS  Google Scholar 

  48. Angulo, M.C, Lambolez, B., Audinat, E., Hestrin, S. & Rossier, J. Subunit composition, kinetic, and permeation properties of AMPA receptors in single neocortical nonpyramidal cells. J. Neurosci. 17, 6685– 6696 (1997).

    Article  CAS  Google Scholar 

  49. Maccaferri, G. & McBain, C. J. Passive propagation of LTD to stratum oriens-alveus inhibitory neurons modulates the temporoammonic input to the hippocampal CA1 region. Neuron 15, 137–145 (1995).

    Article  CAS  Google Scholar 

  50. Amaral, D. G. & Dent J. A. Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. J. Comp. Neurol. 195, 51–86 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mark Mayer, Gianmaria Maccaferri, Derek Bowie and Robert Bähring for their help and advice throughout the course of these experiments, Raymond Dingledine for sharing data prior to publication, and Mark Fleck, Mark Mayer and Vittorio Gallo for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris J. McBain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tóth, K., McBain, C. Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons. Nat Neurosci 1, 572–578 (1998). https://doi.org/10.1038/2807

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2807

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing