Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes

Abstract

Alterations of glycoprotein distribution and lateral mobility in cell membranes can provide transmembrane signals for several membrane-related phenomena1–3. Control of the transmembranous events has been ascribed to interaction between submembranous protein matrices (or ‘cytoskeletons’) and membrane glycoproteins4–7. A consequence of such interaction would be differential inhibition of protein lateral diffusion in biological membranes. Measurements of the lateral diffusion coefficients of membrane proteins, in fact, have generally yielded values8–12 much less than were predicted for unhindered diffusion in a fluid bilayer13,14. The mouse spherocytic erythrocyte, which lacks the major components of the normal erythrocyte membrane matrix15 (composed of spectrin, actin, bands 4.1 and 4.9 (ref. 16), in the nomenclature of Fairbanks et al.17), provides a unique system for a direct evaluation of the effect of the matrix on protein lateral mobility. After using a modification of the technique of fluorescence redistribution after photobleaching (FRAP)18, we report here that membrane proteins diffuse about 50 times faster in spherocytic than in normal mouse erythrocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Isersky, H., Taurog, J., Poy, G. & Metzger, H. J. Immun. 12, 549–555 (1978).

    Google Scholar 

  2. Yahara, I. & Edelman, G. M. Proc. natn. Acad. Sci. U.S.A. 72, 1579–1583 (1975).

    Article  ADS  CAS  Google Scholar 

  3. Orly, J. & Schramm, M. Proc. natn. Acad. Sci. U.S.A. 73, 4410–4414 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Elgsaeter, A. & Branton, D. J. Cell Biol. 63, 1018–1030 (1974).

    Article  CAS  Google Scholar 

  5. Nicolson, G. & Painter, R. G. J. Cell Biol. 59, 395–406 (1973).

    Article  CAS  Google Scholar 

  6. Edelman, G. M. Science 192, 218–226 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Ash, J. F., Louvard, D. & Singer, S. J. Proc. natn. Acad. Sci. U.S.A. 74, 5584–5589 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Edidin, M., Zagyansky, Y. & Lardner, T. J. Science 191, 466–468 (1976).

    Article  ADS  CAS  Google Scholar 

  9. Jacobson, K., Wu, E.-S. & Poste, G. Biochim. biophys. Acta 433, 215–222 (1976).

    Article  CAS  Google Scholar 

  10. Schlessinger, J., Axelrod, D., Koppel, D. E., Webb, W. W. & Elson, E. L. Science 195, 307–310 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Fowler, V. & Branton, D. Nature 268, 23–26 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Schindler, M., Koppel, D. E. & Sheetz, M. P. Proc. natn. Acad. Sci. U.S.A. 77, 1457–1461 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Poo, M.-M. & Cone, R. A. Nature 247, 438–441 (1974).

    Article  ADS  CAS  Google Scholar 

  14. Saffman, P. G. & Delbrück, M. Proc. natn. Acad. Sci. U.S.A. 72, 3111–3115 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Greenquist, A. C., Shohet, S. G. & Bernstein, S. E. Blood 51, 1149–1155 (1978).

    CAS  PubMed  Google Scholar 

  16. Sheetz, M. P. Biochim. biophys. Acta 557, 122–134 (1979).

    Article  CAS  Google Scholar 

  17. Fairbanks, G., Steck, T. L. & Wallach, D. F. H. Biochemistry 10, 2606–2614 (1971).

    Article  CAS  Google Scholar 

  18. Koppel, D. E. Biophys. J. 28, 281–292 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Koppel, D. E., Sheetz, M. P. & Schindler, M. Biophys. J. 30, 187–192 (1980).

    Article  CAS  Google Scholar 

  20. Sheetz, M. P. & Koppel, D. E. Proc. natn. Acad. Sci. U.S.A. 76, 3314–3318 (1979).

    Article  ADS  CAS  Google Scholar 

  21. Geiduschek, J. B. & Singer, S. J. Cell 16, 149–160 (1979).

    Article  CAS  Google Scholar 

  22. Bennett, V. & Stenbuck, P.J. J. biol. Chem. 254, 2533–2541 (1979).

    CAS  PubMed  Google Scholar 

  23. Fowler, V. & Bennett, V. J. supramolec. Struct. 8, 215–221 (1978).

    Article  CAS  Google Scholar 

  24. Schindler, M., Osborn, M. J. & Koppel, D. Nature 283, 346–350 (1980).

    Article  ADS  CAS  Google Scholar 

  25. Cherry, R. J., Burkli, A., Busslinger, M., Schneider, G. & Parish, G. R. Nature 263, 389–393 (1976).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheetz, M., Schindler, M. & Koppel, D. Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes. Nature 285, 510–512 (1980). https://doi.org/10.1038/285510a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/285510a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing