Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain

Abstract

The presence of a novel receptor for the neurotransmitter γ-aminobutyric acid (GABA) on peripheral autononric nerve terminals and in mammalian brain slices has been described recently1–4. This receptor differs from the classical GABA site as it is unaffected by recognized GABA antagonists such as bicuculline and is not sensitive to the majority of accepted GABA-mimetics such as 3-aminopropanesulphonic acid (3-APS) or isoguvacine. We propose to designate the classical site as the GABAA and the novel site as the GABAB receptor. The β-p-chlorophenyl derivative of GABA, baclofen, is stereo-specifically active at the GABAB site whereas it is devoid of activity at the classical GABAA site2,5–9. We now report that high-affinity saturable binding of 3H-baclof en and 3H-G AB A to the GABAB site can be detected in fragments of crude synaptic membranes prepared from rat brain. The results support the concept of a novel GABA receptor within the mammalian brain and show that GABA and baclofen can compete for the same recognition site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bowery, N. G. & Hudson, A. L. Br. J. Pharmac. 66, 108P (1979).

    CAS  Google Scholar 

  2. Bowery, N. G. et al. Br. J. Pharmac. 67, 444–445P (1979).

    Google Scholar 

  3. Bowery, N. G. et al. Eur. J. Pharmac. (in the press).

  4. Bowery, N. G. et al. Nature 283, 92–94 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Curtis, D. R., Game, C. J. A., Johnston, G. A. R. & McCulloch, R. M. Brain Res. 70, 493–499 (1974).

    Article  CAS  Google Scholar 

  6. Davies, J. & Watkins, J. C. Brain Res. 70, 501–505 (1974).

    Article  CAS  Google Scholar 

  7. Olpe, H. R., Koella, W. P., Wolf, P. & Haas, H. L. Brain Res. 134, 577–580 (1977).

    Article  CAS  Google Scholar 

  8. Ault, B. & Evans, R. H. J. Physiol., Lond. 284, 131P (1978).

    CAS  PubMed  Google Scholar 

  9. Feltz, P., Deschenes, M. & Desarmenien, M. in Iontophoresis and Transmitter Mechanisms of the Mammalian Central Nervous System. (eds Ryall, R. & Kelly, J. S.) 264–266 (Elsevier, Amsterdam, 1978).

    Google Scholar 

  10. Zukin, S. R., Young, A. B. & Snyder, S. H. Proc. natn. Acad. Sci. U.S.A. 71, 4802–4807 (1974).

    Article  ADS  CAS  Google Scholar 

  11. Powell, M. J. D. Harwell Report AERE-R5947 (HMSO, London, 1968).

    Google Scholar 

  12. Ottaway, J. H. Biochem. J. 134, 729–736 (1973).

    Article  CAS  Google Scholar 

  13. Galli, A., Zilletti, L., Scotton, M., Adembri, G. & Giotti, A. J. Neurochem. 32, 1123–1125 (1979).

    Article  CAS  Google Scholar 

  14. Olsen, R. W., Greenlee, D., Van Ness, P. & Ticku, M. K. in Amino Acids as Chemical Transmitters (ed. Fonnum, F.) (Plenum, New York, 1978).

    Google Scholar 

  15. Waddington, J. L. & Cross, A. J. Naunyn-Schmiedeberg's Archs Pharmak. 306, 275–280 (1979).

    Article  CAS  Google Scholar 

  16. Horng, J. S. & Wong, D. T. J. Neurochem. 382, 1379–1386 (1979).

    Article  Google Scholar 

  17. Baudry, M. & Lynch, G. Nature 282, 748–750 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Baudry, M. & Lynch, G. Proc. natn. Acad. Sci. U.S.A. 77, 2298–2302 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Pasternak, G. W., Snowman, A. M. & Snyder, S. H. Molec. Pharmac. 11, 735–744 (1975).

    CAS  Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1951).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, D., Bowery, N. 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature 290, 149–152 (1981). https://doi.org/10.1038/290149a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/290149a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing