Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Glycine receptor alteration in the mutant mouse spastic

Abstract

The mutant mouse spastic, which carries a single-locus, recessive mutation1 on chromosome 3 (refs 2, 3), is characterized by hyperexcitability, rapid tremor, rigidity and prolonged righting reflexes1. No anatomical abnormalities have been found in preliminary histological studies of muscle or the central nervous system (CNS)1. Electromyographic studies in spastic mice demonstrate abnormal electrical bursts during activity and abnormal stereotyped reflexes4. Drugs which increase γ-aminobutyric acid (GABA)5 or enhance GABA synaptic action6 reduce spastic symptoms, suggesting that they result from an imbalance in excitatory and inhibitory influences in the spastic CNS. Strychnine antagonizes the synaptic action of glycine7, and binds to a membrane site with the characteristics of the postsynaptic glycine receptor8–11. The behavioural and electrophysiological abnormalities of spastic mice are reproduced in normal mice given subconvulsive doses of strychnine4, suggesting that spastic symptoms might result from a deficiency in glycine-mediated inhibition4. We describe here evidence that supports this hypothesis: a decrease in 3H-strychnine binding in membrane fractions prepared from spastic compared with littermate control mice. We also demonstrate an involvement of the benzodiazepine, and possibly the GABA, binding site in the spastic phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chai, C. K. J. Hered. 52, 241–243 (1961).

    Article  Google Scholar 

  2. Lane, P. W. J. Hered. 63, 135–140 (1972).

    Article  CAS  Google Scholar 

  3. Lane, P. W. & Eicher, E. M. J. Hered. 70, 239–244 (1979); 71, 315–318 (1980).

    Article  CAS  Google Scholar 

  4. Heller, A. H. & Hallett, M. Brain Res. 234, 299–308 (1982).

    Article  CAS  Google Scholar 

  5. Chai, C. K., Roberts, E. & Sidman, R. L. Proc. Soc. exp. Biol. Med. 109, 491–495 (1962).

    Article  CAS  Google Scholar 

  6. Biscoe, T. J. & Fry, J. P. Br. J. Pharmac. 75, 23–35 (1982).

    Article  CAS  Google Scholar 

  7. Curtis, D. R. & Johnston, G. A. R. Ergebn. Physiol. 69, 97–188 (1974).

    CAS  Google Scholar 

  8. Young, A. B. & Snyder, S. H. Proc. natn. Acad. Sci. U.S.A. 70, 2832–2836 (1973).

    Article  ADS  CAS  Google Scholar 

  9. Mackerer, C. R., Kochman, R. L., Shen, T. F. & Hershensen, F. M. J. Pharmac. exp. Ther. 201, 326–331 (1977).

    CAS  Google Scholar 

  10. Young, A. B. & Snyder, S. H. Proc. natn. Acad. Sci. U.S.A. 71, 4002–4005 (1974).

    Article  ADS  CAS  Google Scholar 

  11. Muller, W. E. & Snyder, S. H. Brain Res. 147, 107–116 (1978).

    Article  CAS  Google Scholar 

  12. Biscoe, T. J., Fry, J. P., Martin, I. L. & Rickets, C. J. Physiol., Lond. 317, 32p–33p (1981).

    Google Scholar 

  13. Enna, S. J. & Snyder, S. H. Brain Res. 100, 81–97 (1975).

    Article  CAS  Google Scholar 

  14. Speth, R. C. et al. Fedn Proc. 39, 3032–3038 (1980).

    CAS  Google Scholar 

  15. Yamamura, H. I. & Snyder, S. H. Proc. natn. Acad. Sci. U.S.A. 71, 1725–1729 (1974).

    Article  ADS  CAS  Google Scholar 

  16. Tallman, J. F., Thomas, J. W. & Gallager, D. W. Nature 274, 383–385 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Speth, R. C. & Yamamura, H. I. Eur. J. Pharmac. 54, 397–399 (1979).

    Article  CAS  Google Scholar 

  18. Skolnick, P., Syapin, P. J., Paugh, B. & Paul, S. M. Nature 277, 397–398 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Lippa, A. S., Sano, M. C., Coupet, J., Klepner, C. A. & Beer, B. Life Sci. 23, 2213–2218 (1978).

    Article  CAS  Google Scholar 

  20. Chang, R. S. L., Tran, V. T. & Snyder, S. H. Brain Res. 190, 95–110 (1980).

    Article  CAS  Google Scholar 

  21. Olsen, R. W. & Mikoshiba, K. J. Neurochem. 30, 1633–1636 (1978).

    Article  CAS  Google Scholar 

  22. Palacios, J. M., Wamsley, J. K. & Kuhar, M. J. Brain Res. 222, 285–307 (1981).

    Article  CAS  Google Scholar 

  23. Zarbin, M. A., Wamsley, J. K. & Kuhar, M. J. J. Neurosci. 1, 532–547 (1981).

    Article  CAS  Google Scholar 

  24. Young, W. S. III & Kuhar, M. J. J. Pharmac. exp. Ther. 212, 337–346 (1980).

    CAS  Google Scholar 

  25. Bradford, M. M. Analyt. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, W., Heller, A. Glycine receptor alteration in the mutant mouse spastic. Nature 298, 655–657 (1982). https://doi.org/10.1038/298655a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298655a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing