Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Origin of the receptor potential in inner hair cells of the mammalian cochlea—evidence for Davis' theory

Abstract

The primary sensory hair cells of the mammalian cochlea are located in the organ of Corti, a sensory epithelium which separates fluids of widely differing chemical composition. The apical, sensory surfaces of the hair cells are exposed to the potassium-rich endolymph of the scala media and their lateral and ventral surfaces are exposed to the perilymph of the scala tympani whose chemical composition resembles that of other extracellular fluids1–3. The high potassium concentration of the endolymph (150 mM) is believed to result from the activity of electrogenic potassium pumps located in the stria vascularis which lines the lateral walls of the cochlea3. These pumps are also the source of the positive endocochlear potential of about +80 mV which can be recorded from the scala media4–6. When the ear is stimulated with sound, receptor potentials may be recorded extracellularly from the fluid-filled spaces of the cochlea7,8, and intracellularly from the rows of inner and outer hair cells9–11. According to the ‘resistance microphone’ theory of Davis12, these receptor potentials are derived from the preexisting polarization of the hair cells by a change in the ohmic resistance of the mechanosensitive portion of the cell membrane (Fig. 1). This produces potential changes in the scala tympani and scala media of opposite phase, thus giving rise to the cochlear microphonic (CM). Evidence is presented here to support this theory. When sufficient depolarizing current is injected into inner hair cells to cancel the polarizing voltage, the receptor potentials disappear, and their phase is reversed when the polarizing voltage across the apical membranes of the hair cells is reversed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smith, C. A., Lowry, O. H. & Wu, M. L. Laryngoscope 64, 141–153 (1954).

    CAS  PubMed  Google Scholar 

  2. Bosher, S. K. & Warren, R. L. Proc. R. Soc. B171, 227–247 (1968).

    ADS  CAS  Google Scholar 

  3. Johnston, B.M. & Sellick, P. M. Q. Rev. Biophys. 5, 1–57 (1972).

    Article  Google Scholar 

  4. Tasaki, I. & Spyropoulos, C. S. J. Neurophysiol. 22, 149–155 (1959).

    Article  CAS  Google Scholar 

  5. Kuipers, W. & Bonting, S. L. Biochim. biophys. Acta 173, 477–485 (1969).

    Article  Google Scholar 

  6. Kuipers, W. & Bonting, S. L. Plügers Arch. ges. Physiol. 320, 348–358 (1970).

    Article  Google Scholar 

  7. Wever, E. G. & Bray, C. W. Proc. Acad. natn. Sci. U.S.A. 16, 344–350 (1930).

    Article  ADS  CAS  Google Scholar 

  8. Dallos, P. The Auditory Periphery (Academic, New York, 1973).

    Google Scholar 

  9. Russell, I. J. & Sellick, P. M. Nature 267, 858–860 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Tanaka, Y., Asanuma, K. & Yanagisawa, K. Hearing Res. 2, 431 (1980).

    Article  CAS  Google Scholar 

  11. Dallos, P., Santos-Sacchi, J. & Flock, A. Science 218, 582–584 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Davis, H. Cold Spring Harb. Symp. quant. Biol. 30, 181–189 (1965).

    Article  CAS  Google Scholar 

  13. Corey, D. P. & Hudspeth, A. J. Nature 281, 675–677 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Evans, E. F. Archs Otolar. 105, 185–186 (1979).

    Article  CAS  Google Scholar 

  15. Russell, I. J. & Sellick, P. M. J. Physiol., Lond. 284, 261–290 (1978).

    Article  CAS  Google Scholar 

  16. Crawford, A. C. & Fettiplace, R. J. Physiol., Lond. 315, 317–338 (1981).

    Article  CAS  Google Scholar 

  17. Geisler, C. D., Mountain, D. C., Hubbard, A. E., Adrian, H. O. & Ravindran, A. J. acoust. Soc. Am. 61, 1557–1566 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Durrant, J. D. & Gans, D. Acta oto-lar. 80, 13–18 (1975).

    Article  CAS  Google Scholar 

  19. Mountain, D. C., Hubbard, A. E. and Geisler, C. D. Hearing Res. 3, 215–229 (1980).

    Article  CAS  Google Scholar 

  20. Mountain, D. C. Science 210, 71–72 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Siegel, J. H. & Kim, D. O. Hearing Res. 6, 171–182 (1982).

    Article  CAS  Google Scholar 

  22. Neher, E. & Stevens, C. F. A. Rev. Biophys. Bioenng 6, 345–381 (1977).

    Article  CAS  Google Scholar 

  23. Hudspeth, A. J. J. Neurosci. 2, 1–10 (1982).

    Article  CAS  Google Scholar 

  24. Ashmore, J. F. & Russell, I. J. Bioacoustics. (ed Lewis. B.) (Academic, London, in the press).

  25. Engstrom, H., Ades, H. W. & Hawkins, J. E. J. acoust. Soc. Am. 34, 1356–1363 (1962).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, I. Origin of the receptor potential in inner hair cells of the mammalian cochlea—evidence for Davis' theory. Nature 301, 334–336 (1983). https://doi.org/10.1038/301334a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301334a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing