Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels

Abstract

Rapid calcium efflux from the sarcoplasmic reticulum (SR) is a necessary step in excitation–contraction coupling in skeletal muscle and is thought to be mediated by a calcium channel1–3. Calcium efflux has been studied in fragmented SR vesicles by radioisotope efflux and fluorescence measurements. Several laboratories have reported that adenine nucleotides can stimulate calcium efflux from SR4–7. In recent reports, Ca2+ release with a first-order rate constant as high as 100 s−1 has been observed for nucleotide-stimulated Ca2+ release from SR vesicles8,9. Also, radioisotope efflux was blocked by Mg2+ and micromolar concentrations of the polycationic dye, ruthenium red1–7. These high rates of transport are difficult to reconcile with a mechanism other than passive diffusion through a nucleotide-activated ‘calcium release channel’7–9. Using the fusion technique for inserting SR proteins into planar lipid bilayers10, we report here single-channel recordings of calcium release channels from purified ‘heavy’ SR membranes. Channels have been identified on the basis of their activation by adenine nucleotides, blockade by ruthenium red, and selectivity for divalent cations. Surprisingly, the channel studied here exhibits an unusually large conductance of 170 pS in 50 mM Ba2+ while still being capable of discriminating against monovalent cations by a permeability ratio, P(Ba)/P(Cs) = 11.4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ebashi, A. A. Rev. Physiol. 38, 293–313 (1976).

    Article  CAS  Google Scholar 

  2. Endo, M. Physiol. Rev. 57, 71–108 (1977).

    Article  CAS  Google Scholar 

  3. Bianchi, C. P. & Frank, G. B. Can. J. Physiol. Pharmac. 60, 415–588 (1982).

    Article  CAS  Google Scholar 

  4. Ogawa, Y. & Ebashi, S. J. Biochem., Tokyo 80, 1149–1157 (1976).

    Article  CAS  Google Scholar 

  5. Endo, M. & Kitazawa, O. Proc. Japan Acad. 52, 599 (1976).

    Article  Google Scholar 

  6. Morii, H. & Tonomura, Y. J. Biochem., Tokyo 93, 1271–1285 (1983).

    Article  CAS  Google Scholar 

  7. Meissner, G. J. biol. Chem. 259, 2365–2374 (1984).

    CAS  PubMed  Google Scholar 

  8. Nagasaki, K. & Kasai, M. J. Biochem., Tokyo 94, 1101–1109 (1983).

    Article  CAS  Google Scholar 

  9. Meissner, G., Darling, E. & Eveleth, J. J. Biochemistry (in the press).

  10. Miller, C. & Racker, E. J. Membrane Biol. 30, 283–300 (1976).

    Article  CAS  Google Scholar 

  11. Meissner, G. Molec. cell. Biochem. 55, 65–82 (1983).

    Article  CAS  Google Scholar 

  12. Miller, C. J. Membrane Biol. 40, 1–23 (1978).

    Article  CAS  Google Scholar 

  13. Kushmerick, M. J. in Handbook of Physiology Section 10 (eds Peachey, L. D., Adrian, R. H. & Geiger, S. R.) 189–236 (American Physiological Society, Bethesda, Maryland, (1983).

    Google Scholar 

  14. Baylor, S. M., Chandler, W. K. & Marshall, M. W. J. Physiol, Lond. 344, 625–666 (1983).

    Article  CAS  Google Scholar 

  15. Gupta, R. K. & Moore, R. D. J. biol. Chem. 255, 3987–3993 (1980).

    CAS  PubMed  Google Scholar 

  16. Lee, K. S. & Tsien, R. W. J. Physiol., Lond. 354, 253–272 (1984).

    Article  CAS  Google Scholar 

  17. Coronado, R., Rosenberg, R. & Miller, C. J. gen. Physiol 76, 425–446 (1980).

    Article  CAS  Google Scholar 

  18. Nelson, M. T., French, R. J. & Krueger, B. K. Nature 308, 77–80 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Affolter, H. & Coronado, R. Biophys. J. (in the press).

  20. Fabiato, A. J. gen. Physiol 78, 457–497 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, J., Coronado, R. & Meissner, G. Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels. Nature 316, 446–449 (1985). https://doi.org/10.1038/316446a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/316446a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing