Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Modulation of AMPA receptor unitary conductance by synaptic activity

Abstract

Activity-dependent alteration in synaptic strength is a fundamental property of the vertebrate central nervous system and is thought to underlie learning and memory. The most extensively studied model of activity-dependent synaptic plasticity is long-term potentiation (LTP) of glutamate-responsive (glutamatergic) synapses, a widespread phenomenon involving multiple mechanisms1. The best characterized form of LTP occurs in the CA1 region of the hippocampus, in which LTP is initiated by transient activation of NMDA (N-methyl-D-aspartate) receptors and is expressed as a persistent increase in synaptic transmission through AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate) receptors2. This increase is due, at least in part, to a postsynaptic modification of AMPA-receptor function3; this modification could be caused by an increase in the number of receptors, their open probability, their kinetics or their single-channel conductance. Here we show that the induction of LTP in the CA1 region of the hippocampus is often associated with an increase in single-channel conductance of AMPA receptors. This shows that elementary channel properties can be rapidly modified by synaptic activity and provides an insight into one molecular mechanism by which glutamatergic synapses can alter their strength.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Non-stationary fluctuation analysis (non-SFA) of EPSCs recorded from CA1 dendrites.
Figure 2: LTP is associated with an increase in AMPA-receptor conductance (γ).
Figure 3: A summary of changes in γ associated with LTP.
Figure 4: Increase in γ is specific to LTP.
Figure 5: Failures analysis of LTP of dendritically recorded EPSCs.

References

  1. Bliss, T. V. P. & Collingridgee, G. L. Asynaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Collingridge, G. L., Kehl, S. J. & McLennan, H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. (Lond.) 334, 33–46 (1983).

    Article  CAS  Google Scholar 

  3. Davies, S. N., Lester, R. A. J., Reymann, K. G. & Collingridgee, G. L. Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation. Nature 338, 500–503 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Traynelis, S. F., Silver, R. A. & Cull-Candy, S. G. Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fiber-granule cell synapse. Neuron 11, 279–289 (1993).

    Article  CAS  Google Scholar 

  5. De Koninck, Y. & Mody, I. Noise analysis of miniature IPSCs in adult rat brain slices: Properties and modulation of synaptic GABAAreceptor channels. Neurophysiol. 71, 1318–1335 (1994).

    Article  CAS  Google Scholar 

  6. Silver, R. A., Cull-Candy, S. G. & Takahashi, T. Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. J. Physiol. (Lond.) 494, 231–250 (1996).

    Article  CAS  Google Scholar 

  7. Jonas, P., Major, G. & Sakmann, B. Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J. Physiol. (Lond.) 472, 615–663 (1993).

    Article  CAS  Google Scholar 

  8. Spruston, N., Jonas, P. & Sakmann, B. Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. J. Physiol. (Lond.) 482, 325–352 (1995).

    Article  CAS  Google Scholar 

  9. Major, G., Larkman, A. U., Jonas, P., Sakmann, B. & Jack, J. J. B. Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J. Neurosci. 14, 4613–4638 (1994).

    Article  CAS  Google Scholar 

  10. Clay, J. R. & DeFelice, L. J. Relationship between membrane excitability and single channel open-close kinetics. Biophys. J. 42, 151–157 (1983).

    Article  CAS  Google Scholar 

  11. Clements, J. D., Lester, R. A. J., Tong, G., Jahr, C. E. & Westbrook, G. L. The time course of glutamate in the synaptic cleft. Science 258, 1498–1501 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Stuart, G. J., Dodt, H.-U. & Sakmann, B. Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflugers Arch. 423, 511–518 (1993).

    Article  CAS  Google Scholar 

  13. Malinow, R. & Tsien, R. W. Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices. Nature 346, 177–180 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Stevens, C. F. & Wang, Y. Changes in reliability of synaptic function as a mechanism for plasticity. Nature 371, 704–707 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Isaac, J. T. R., Hjelmstad, G. O., Nicoll, R. A. & Malenka, R. C. Long-term potentiation at single fiber inputs to hippocampal CA1 pyramidal cells. Proc. Natl Acad. Sci. USA 93, 8710–8715 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Allen, C. & Stevens, C. F. An evaluation of causes for unreliability of synaptic transmission. Proc. Natl Acad. Sci. USA 91, 10380–10383 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Swanson, G. T., Kamboj, S. K. & Cull-Candy, S. G. Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J. Neurosci. 17, 58–69 (1997).

    Article  CAS  Google Scholar 

  18. Greengard, P., Jen, J., Nairn, A. C. & Stevens, C. F. Enhancement of the glutamate resposne by cAMP-dependent protein kinase in hippocampal neurones. Science 253, 1135–1138 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Wang, L.-Y., Salter, M. W. & MacDonald, J. F. Regulation of kainate receptors by cAMP-dependent protein kinase and phosphatases. Science 253, 1132–1135 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Cull-Candy, S. G. & Usowicz, M. M. Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons. Nature 325, 525–528 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Jahr, C. E. & Stevens, C. F. Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325, 522–525 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Barria, A., Muller, D., Derkach, V., Griffith, L. C. & Soderling, T. R. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276, 2042–2045 (1997).

    Article  CAS  Google Scholar 

  23. Kullmann, D. M. & Siegelbaum, S. A. The site of expression of NMDA receptor-dependent LTP: new fuel for old fire. Neuron 15, 997–1002 (1995).

    Article  CAS  Google Scholar 

  24. Shrike, A. M. & Malinow, R. Mechanisms of potentiation by calcium-calmodulin kinase II of postsynaptic sensitivity in rat hippocampal neurons. J. Neurophysiol. 78, 2682–2692 (1997).

    Article  Google Scholar 

  25. Liao, D., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Isaac, J. T. R., Nicoll, R. A. & Malenka, R. C. Evidence for silent synapses: implications for the expression of LTP. Neuron 15, 427–434 (1995).

    Article  CAS  Google Scholar 

  27. Traynelis, S. F. & Wahl, P. Control of rat GluR6 glutamate receptor open probability by protein kinase A and calcineurin. J. Physiol. (Lond.) 503, 513–531 (1997).

    Article  CAS  Google Scholar 

  28. Hines, M. L. Efficient computation of branched nerve equations. Int. J. Biomed. Comp. 15, 69–76 (1984).

    Article  ADS  CAS  Google Scholar 

  29. Homes, W. R. & Levy, W. B. Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes. J. Neurophysiol. 63, 1148–1168 (1990).

    Article  Google Scholar 

  30. Sigworth, F. J. The variance of sodium current fluctuations at the node of Ranvier. J. Physiol. (Lond.) 307, 97–129 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Silver and M. Farrant for their advice, and W. W. Anderson for providing the data acquisition software. This work was supported by the MRC (T.A.B., G.L.C.), NIH (T.A.B.), Swiss National Science Foundation (A.L.) and Wellcome Trust (J.T.R.I., G.L.C.).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benke, T., Lüthi, A., Isaac, J. et al. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393, 793–797 (1998). https://doi.org/10.1038/31709

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/31709

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing