Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Normal p21N-ras couples bombesin and other growth factor receptors to inositol phosphate production

Abstract

Many receptors, in response to ligand activation, trigger inositol phospholipid breakdown, which leads to rapid intracellular responses1–4. The sustained activation of this pathway is believed to be at least one of the factors involved in the stimulation of cell growth and there has been much speculation4–6 that certain oncogenes use this pathway to effect uncontrolled cellular proliferation. It has been suggested7, by analogy with the receptor-mediated control of adenylate cyclase8, that the receptor stimulation of inositol phospholipid metabolism is mediated through a guanine nucleotide regulatory protein (G-protein) called Gp (or Np). Although such a species has not been identified, there is now strong experimental evidence that this process is mediated by a G-protein distinct from the stimulatory and inhibitory G-proteins (Gs and Gi, respectively)9–12. The ras genes code for a plasma membrane protein, p21, whose only known biochemical property is a high-affinity GTPase activity13. We show here that the expression of normal p21N–ras in NIH 3T3 fibroblasts leads to the coupling of certain growth factor receptors to stimulated inositol phosphate production. We propose that the N-ras proto-oncogene encodes a protein which couples the receptors for certain growth factors to the stimulation of phospholipase C. Thus, N-ras p 21 may be the putative Gp or a functionally related protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Michell, R. H. Biochim. biophys. Acta 415, 81–147 (1975).

    Article  CAS  PubMed  Google Scholar 

  2. Berridge, M. J. Biochem. J. 220, 345–360 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Berridge, M. J. & Irvine, R. F. Nature 312, 315–321 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Downes, C. P. & Michell, R. H. Molec. Aspects cell. Regul. 4, 2–56 (1985).

    Google Scholar 

  5. Berridge, M. J. Biotechnology 2, 541–546 (1984).

    CAS  Google Scholar 

  6. Michell, R. H. Nature 308, 770 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Gomperts, B. D. Nature 306, 64–66 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Houslay, M. D. Trends biochem. Sci. 9, 39–40 (1984).

    Article  CAS  Google Scholar 

  9. Haslam, R. J. & Davidson, M. M. L. FEBS Lett. 174, 90–95 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. Litosch, I., Wallis, C. & Fain, J. N. J. biol. Chem. 260, 5464–5471 (1985).

    CAS  PubMed  Google Scholar 

  11. Gonzales, R. A. & Crews, F. T. Biochem. J. 232, 799–804 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Houslay, M. D., Bojanic, D. & Wilson, A. Biochem. J. 234, 737–740 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McGrath, J. P., Capon, D. J., Goeddel, D. V. & Levinson, A. D. Nature 310, 644–649 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Shih, C., Paddy, L. C., Murray, M. & Weinberger, R. A. Nature 290, 261–264 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Krontiris, T. G. & Cooper, G. M. Proc. natn. Acad. Sci. U.S.A. 78, 1181–1184 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Marshall, C. J., Hall, A. & Weiss, R. A. Nature 299, 171–173 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Santos, E., Tronick, S. R., Aaronson, S. A., Pulciani, S. & Barbacid, M. Nature 298,343–347 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Pulciani, S. et al. Nature 300, 539–542 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Hall, A., Marshall, C. J., Spurr, N. & Weiss, R. A. Nature 303, 396–400 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Willingham, M. C., Banks-Schlegal, S. P. & Pastan, I. E. Expl Cell Res. 149, 141–149 (1983).

    Article  CAS  Google Scholar 

  21. Tanabe, T. et al. Nature 315, 242–245 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Zachary, I. & Rozengurt, E. Proc. natn. Acad. Sci. U.S.A. 82, 7616–7620 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Berridge, M. J., Heslop, J. P., Irvine, R. F. & Brown, K. D. Biochem. J. 222, 195–201 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hasegawa-Sasaki, H. Biochem. J. 232, 99–109 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heldin, C. H. & Westermark, B. Cell 37, 9–20 (1984).

    Article  CAS  PubMed  Google Scholar 

  26. Fleischman, L. F., Chahwala, S. B. & Cantley, L. Science 231, 407–410 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Kamata, T. & Feramisco, J. R. Nature 310, 147–150 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Adams, R. L. P. Expl Cell Res. 56, 49–54 (1969).

    Article  CAS  Google Scholar 

  29. Berridge, M. J., Downes, C. P. & Hanley, M. R. Biochem. J. 206, 587–595 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Berridge, M. J., Dawson, R. M. C., Downes, C. P., Heslop, J. P. & Irvine, R. F. Biochem. J. 212, 473–482 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Furth, M. E., Davis, L. J., Fleurdelys, B. & Scolnick, E. M. J. Virol. 43, 294–304 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Moody, T. W., Carney, D. N., Cutitta, F., Quattrocchi, K. & Minna, J. D. Life Sci. 37, 105–113 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Jensen, R. T., Moody, T., Pert, C., Rivier, J. E. & Gardner, J. D. Proc. natn. Acad. Sci. U.S.A. 75, 6139–6143 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakelam, M., Davies, S., Houslay, M. et al. Normal p21N-ras couples bombesin and other growth factor receptors to inositol phosphate production. Nature 323, 173–176 (1986). https://doi.org/10.1038/323173a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323173a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing