Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A cellular analogue of visual cortical plasticity

An Erratum to this article was published on 23 June 1988

Abstract

Neuronal activity plays an important role in the development of the visual pathway. The modulation of synaptic transmission by temporal correlation between pre- and postsynaptic activity is one mechanism which could underly visual cortical plasticity1–4. We report here that functional changes in single neurons of area 17, analogous to those known to take place during epigenesis of visual cortex5,6, can be induced experimentally during the time of record? ing. This was done by a differential pairing procedure, during which iontophoresis was used to artificially increase the visual response for a given stimulus, and to decrease (or block) the response for a second stimulus which differed in ocularity or orientation. Long-term modifications in ocular dominance and orientation selectivity were produced in 33% and 43% of recorded cells respectively. Neuronal selectivity was nearly always displaced towards the stimulus paired with the reinforced visual response. The largest changes were obtained at the peak of the critical period in normally reared and visually deprived kittens, but changes were also observed in adults. Our findings support the role of temporal correlation between pre- and postsynaptic activity in the induction of long-lasting modifications of synaptic transmission during development, and in associative learning.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Hebb, D. O. The Organization of Behavior (Wiley, New York, 1949).

    Google Scholar 

  2. Rauschecker, J. P. & Singer, W. J. Physiol., Lond. 310, 215–239 (1981).

    Article  CAS  Google Scholar 

  3. Bienenstock, E., Cooper, L. N. & Munro, P. J. Neurosci. 2, 32–48 (1982).

    Article  CAS  Google Scholar 

  4. Frégnac, Y. in Imprinting and Cortical Plasticity (eds Rauschecker, J. P. & Marler, P.), 221–266 (Wiley, New York, 1987).

    Google Scholar 

  5. Wiesel, T. N. Nature 299, 583–591 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Frégnac, Y. & Imbert, M. Physiol. Rev. 64, 325–434 (1984).

    Article  Google Scholar 

  7. Sejnowski, T. J. J. math. Biol. 4, 303–321 (1977).

    Article  CAS  Google Scholar 

  8. Frégnac, Y. & Shulz, D. in Seeing Contour and Colour (ed. Kulikowski, J. J.) (Pergamon, Oxford, in the press).

  9. Marr, D. Proc. R. Soc. Lond. B, 176, 161–234 (1970).

    ADS  CAS  PubMed  Google Scholar 

  10. Stent, G. Proc. natn. Acad. Sci. U.S.A. 70, 997–1001 (1973).

    Article  ADS  CAS  Google Scholar 

  11. Sherman, S. M. & Spear, P. D. Physiol. Rev. 62, 738–855 (1982).

    Article  CAS  Google Scholar 

  12. Hubel, D. H. & Wiesel, T. N. J. Physiol., Lond. 206, 419–436 (1970).

    Article  CAS  Google Scholar 

  13. Hirsch, H. V. B. & Spinelli, D. N. Science 168, 869–871 (1970).

    Article  ADS  CAS  Google Scholar 

  14. Blakemore, C. & Cooper, G. F. Nature 228, 477–478 (1970).

    Article  ADS  CAS  Google Scholar 

  15. Barlow, H. B. Nature 235, 199–204 (1975).

    Article  ADS  Google Scholar 

  16. Trotter, Y. Frégnac, Y. & Buisseret, P. J. Neurophysiol. 58, 795–815 (1987).

    Article  CAS  Google Scholar 

  17. Eccles, J. C. The Physiology of Synapses (Springer, Berlin, 1966).

    Google Scholar 

  18. Baranyi, A. & Féher, O. Nature 290, 413–415 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Baranyi, A. & Szente, M. Brain Res. 423, 378–384 (1987).

    Article  CAS  Google Scholar 

  20. Bindman, L. J., Meyer, T. & Pocket, S. J. Physiol., Lond. 386, 90P (1987).

    Google Scholar 

  21. Wigström, H., Gustafsson, B., Huang, Y. Y. & Abraham, W. C. Acta physiol. scand. 126, 317–318 (1986).

    Article  Google Scholar 

  22. Kelso, S. R., Ganong, A. H. & Brown, T. J. Proc. natn. Acad. Sci. U.S.A. 83, 5326–5330 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Andersen, P. in The Neural and Molecular Mechanisms of Learning (eds Changeux, J. P. & Konishi, M.) 239–267 (Wiley, Chichester, 1987).

    Google Scholar 

  24. Anola, A. & Singer, W. Nature 330, 649–652 (1987).

    Article  ADS  Google Scholar 

  25. Trotter, Y., Frégnac, Y. & Buisseret, P. C. r. Acad. Sci. Paris D 296, 665–668 (1983).

    CAS  Google Scholar 

  26. Frégnac, Y. & Bienenstock, E. Documenta Ophth. Proc. Ser. 30, 100–108 (1981).

    Google Scholar 

  27. Reiter, H. O. & Stryker, M. P. Soc. Neurosci. Abstr. 13, 1241 (1987).

    Google Scholar 

  28. Kasamatsu, T., Watabe, K., Heggelund, P. & Schöller, E. Neurosci. Res. 2, 365–386 (1985).

    Article  CAS  Google Scholar 

  29. Heggelund, P., Imamura, K. & Kasamatsu, T. Expl Brain Res. 68, 593–605 (1987).

    Article  CAS  Google Scholar 

  30. Tsumoto, T., Hagihara, K., Sato, H. & Hata, Y. Nature 327, 513–514 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frégnac, Y., Shulz, D., Thorpe, S. et al. A cellular analogue of visual cortical plasticity. Nature 333, 367–370 (1988). https://doi.org/10.1038/333367a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/333367a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing