Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Associative long-term depression in the hippocampus induced by hebbian covariance

Abstract

A BRIEF, high-frequency activation of excitatory synapses in the hippocampus produces a long-lasting increase in synaptic strengths called long-term potentiation (LTP)1. A test input, which by itself does not have a long-lasting effect on synaptic strengths, can be potentiated through association when it is activated at the same time as a separate conditioning input2–4.Neural network modelling studies have also predicted that synaptic strengths should be weakened when test and conditioning inputs are anti-correlated5–8. Evidence for such heterosynaptic depression in the hippocampus has been found for inputs that are inactive2,9 or weakly active3 during the stimulation of a conditioning input, but this depression does not depend on any pattern of test input activity and does not seem to last as long as LTP. We report here an associative long-term depression (LTD) in field CA1 that is produced when a low-frequency test input is negatively correlated in time with a high-frequency conditioning input. LTD of synaptic strength is also produced by activating presynaptic terminals while a postsy-naptic neuron is hyperpolarized. This confirms theoretical predictions8 that the mechanism for associative LTD is homosynaptic and follows a hebbian covariance rule7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bliss, T. V. P. & Lomo, T. J. Physiol. Lond. 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  2. Levy, W. B. & Steward, O. Brain Res. 175, 233–245 (1979).

    Article  CAS  Google Scholar 

  3. Levy, W. B. & Steward, O. Neuroscience 8, 791–797 (1983).

    Article  CAS  Google Scholar 

  4. Barrionuevo, G. & Brown, T. H. Proc. natn. Acad. Sci. U.S.A. 80, 7347–7351 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Kohonen, T. Self-Organization and Associative Memory (Springer, Heidelberg, 1984).

    MATH  Google Scholar 

  6. Bienenstock, E., Cooper, L. N. & Munro, P. J. Neurosci. 2, 32–48 (1982).

    Article  CAS  Google Scholar 

  7. Sejnowski, T. J. J. math. Biol. 4, 303–321 (1977).

    Article  CAS  Google Scholar 

  8. Sejnowski, T. J. J. theor. Biol. 69, 385–389 (1977).

    Article  CAS  Google Scholar 

  9. Lynch, G. S., Dunwiddie, T. & Gribkoff, V. Nature 266, 737–739 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Larson, J. & Lynch, G. Science 232, 985–988 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Collingridge, G. L., Kehl, S. J. & McLennan, H. J. Physiol. Lond. 334, 33–46 (1983).

    Article  CAS  Google Scholar 

  12. Harris, E. W., Ganong, A. H. & Cotman, C. W. Brain Res. 323, 132–137 (1984).

    Article  CAS  Google Scholar 

  13. Wigstrom, H. & Gustafsson, B. Neurosci. Lett. 44, 327–332 (1984).

    Article  CAS  Google Scholar 

  14. Mody, I., Stanton, P. K. & Heinemann, U. J. Neurophysiol. 59, 1033–1054 (1988).

    Article  CAS  Google Scholar 

  15. Kelso, S. R., Ganong, A. H. & Brown, T. H. Proc. natn. Acad. Sci. U.S.A. 83, 5326–5330 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Malinow, R. & Miller, J. P. Nature 320, 529–530 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Gustafsson, B., Wigstrom, H., Abraham, W. C. & Huang, Y. Y. J. Neurosci. 7, 774–780 (1987).

    Article  CAS  Google Scholar 

  18. Reiter, H. O. & Stryker, M. P. Proc. natn. Acad. Sci. U.S.A. 85, 3623–3627 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Fregnac, Y., Shulz, D., Thorpe, S. & Bienenstock, E. Nature 333, 367–370 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Greuel, J. M., Luhmann, H. J. & Singer, W. Science 242, 74–77 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanton, P., Sejnowski, T. Associative long-term depression in the hippocampus induced by hebbian covariance. Nature 339, 215–218 (1989). https://doi.org/10.1038/339215a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339215a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing