Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural parts involved in activation and inactivation of the sodium channel

Abstract

Structure–function relationships of the sodium channel expressed inXenopus oocytes have been investigated by the combined use of site–directed mutagenesis and patch-clamp recording. This study provides evidence that the positive charges in segment S4 are involved in the voltage–sensing mechanism for activation of the channel and that the region between repeats III and IV is important for its inactivation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hodgkin, A. L. & Huxley, A. F. J. Physiol., Lond. 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  2. Hille, B. Ionic Channels of Excitable Membranes (Sinauer, Sunderland, Massachusetts, 1984).

    Google Scholar 

  3. Armstrong, C. M. & Bezanilla, F. Nature 242, 459–461 (1973).

    Article  ADS  CAS  Google Scholar 

  4. Keynes, R. D. & Rojas, E. J. Physiol., Lond. 239, 393–434 (1974).

    Article  CAS  Google Scholar 

  5. Noda, M. et al. Nature 312, 121–127 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Noda, M. et al. Nature 320, 188–192 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Kayano, T., Noda, M., Flockerzi, V., Takahashi, H. & Numa, S. FEBS Lett. 228, 187–194 (1988).

    Article  CAS  Google Scholar 

  8. Salkoff, L. et al. Science 237, 744–749 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Tanabe, T. et al. Nature 328, 313–318 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Tanabe, T., Beam, K. G., Powel, J. A. & Numa, S. Nature 336, 134–139 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Tempel, B. L., Papazian, D. M., Schwarz, T. L. Jan, Y. N. & Jan, L. Y. Science 237, 770–775 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Timpe, L. C. et al. Nature 331, 143–145 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Pongs, O. et al. EMBO J. 7, 1087–1096 (1988).

    Article  CAS  Google Scholar 

  14. Tempel, B. L., Jan, Y. N. & Jan, L. Y. Nature 332, 837–839 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Baumann, A., Grupe, A., Ackermann, A. & Pongs, O. EMBO J. 7, 2457–2463 (1988).

    Article  CAS  Google Scholar 

  16. Noda, M. et al. Nature 322, 826–828 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Stühmer, W., Methfessel, C., Sakmann, B., Noda, M. & Numa, S. Eur. biophys. J. 14, 131–138 (1987).

    Article  Google Scholar 

  18. Suzuki, H. et al. FEBS Lett. 228, 195–200 (1988).

    Article  CAS  Google Scholar 

  19. Auld, V. J. et al. Neuron 1, 449–461 (1988).

    Article  CAS  Google Scholar 

  20. Armstrong, C. M. & Bezanilla, F. J. gen. Physiol. 70, 567–590 (1977).

    Article  CAS  Google Scholar 

  21. Aldrich, R. W., Corey, D. P. & Stevens, C. F. Nature 306, 436–441 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Stimers, J. R., Bezanilla, F. & Taylor, R. E. J. gen. Physiol. 85, 65–82 (1985).

    Article  CAS  Google Scholar 

  23. Hille, B., Woodhull, A. M. & Shapiro, B. I. Phil. Trans. R. Soc. Lond. B 270, 301–318 (1975).

    Article  ADS  CAS  Google Scholar 

  24. Guy, H. R. & Seetharamulu, P. Proc. natn. Acad. Sci. U.S.A. 83, 508–512 (1986).

    Article  ADS  CAS  Google Scholar 

  25. Greenblatt, R. E., Blatt, Y. & Montal, M. FEBS Lett. 193, 125–134 (1985).

    Article  CAS  Google Scholar 

  26. Caterall, W. A. A. Rev. Biochem. 55, 953–985 (1986).

    Article  Google Scholar 

  27. Methfessel, C. et al. Pflügers Arch. 407, 577–588 (1986).

    Article  CAS  Google Scholar 

  28. Rojas, E. & Armstrong, C. M. Nature new Biol. 229, 177–178 (1971).

    Article  CAS  Google Scholar 

  29. Armstrong, C. M., Bezanilla, F. & Rojas, E. J. gen. Physiol. 62, 375–391 (1973).

    Article  CAS  Google Scholar 

  30. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  31. Keynes, R. D. & Rojas, E. J. Physiol., Lond. 255, 157–189 (1976).

    Article  CAS  Google Scholar 

  32. Colquhoun, D. & Sigworth, F. J. in Single-Channel Recording (eds Sakmann, B. & Neher, E.) 191–263 (Plenum, New York, 1983).

    Book  Google Scholar 

  33. Vassilev, P. M., Scheuer, T. & Catterall, W. A. Science 241, 1658–1661 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stühmer, W., Conti, F., Suzuki, H. et al. Structural parts involved in activation and inactivation of the sodium channel. Nature 339, 597–603 (1989). https://doi.org/10.1038/339597a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339597a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing