Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

5-HT3 receptors are membrane ion channels

Abstract

THE neurohormone 5-hydroxytryptamine (5HT or serotonin) exerts its effects by binding to several distinct receptors1. One of these is the M-receptor of Gaddum and Picarelli2, now called the 5-HT3 receptor, through which 5-HT acts to excite enteric neurons. Ligand-binding and functional studies have shown that the 5-HT3 receptor is widely distributed in peripheral and central nervous tissue3–5 and evidence suggests that the receptor might incorporate an ion channel permeable to cations6,7. We now report the first recordings of currents through single ion channels activated by 5-HT3 receptors, in excised (outside-out) membrane patches from neurons of the guinea pig submucous plexus. Whereas application of acetylcholine activated predominantly a 40-pS channel, 5-HT caused unitary currents apparently through two channels of conductances of 15 and 9 pS, which were reversibly blocked by antagonists of the 5-HT3 receptor. Receptors for amine neurotransmitters, including 5-HT1, and 5-HT2, have previously been thought to transduce their effects through GTP-binding proteins1: the direct demonstration that 5-HT3 receptors are ligand-gated ion channels implies a role for 5-HT, and perhaps other amines, as a 'fast' synaptic transmitter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Peroutka, S. J. Trends Neurosci. 11, 496–500 (1988).

    Article  CAS  Google Scholar 

  2. Gaddum, J. H. & Picarelli, Z. P. Br. J. Pharmacol. 12, 323–328 (1957).

    CAS  Google Scholar 

  3. Richardson, B. P., Engel, G., Donatsch, P. & Stadler, P. A. Nature 316, 126–131 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Richardson, B. P. & Engel, G. Trends Neurosci. 9, 424–428 (1986).

    Article  CAS  Google Scholar 

  5. Kilpatrick, G. J., Jones, B. J. & Tyers, M. B. Nature 330, 746–748 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Surprenant, A. & Crist, J. Neuroscience 24, 283–295 (1988).

    Article  CAS  Google Scholar 

  7. Yakel, J. L. & Jackson, M. B. Neuron 1, 615–621 (1988).

    Article  CAS  Google Scholar 

  8. Nield, T. O. Gen. Pharmacol. 12, 281–284 (1978).

    Article  Google Scholar 

  9. Higashi, H. & Nishi, S. J. Physiol. 323, 543–567 (1982).

    Article  CAS  Google Scholar 

  10. Mawe, G. M., Branchek, T. A. & Gershon, M. D. Proc. natn. Acad. Sci. U.S.A. 83, 9799–9803 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Skok, V. I. & Selyanko, A. A. in Integrative Functions of the Autonomic Nervous System (eds Brooks, C. McC., Koizumi, K. & Sato, A.) 248–253 (Elsevier, Amsterdam, 1979).

    Google Scholar 

  12. Surprenant, A. & North, R. A. Proc. R. Soc. Lond. B. 234, 85–114 (1988).

    Article  ADS  CAS  Google Scholar 

  13. North, R. A., Surprenant, A. & Tatsumi, H. J. Physiol. 406, 179P.*

  14. Stroud, R. M. & Finer-Moore, J. A. Rev. Cell Biol. 1, 317–351 (1985).

    Article  CAS  Google Scholar 

  15. Steinbach, J. H. & Ifune, C. Trends Neurosci. 11, 3–6 (1989).

    Article  Google Scholar 

  16. Derkach, V. A., North, R. A., Selyanko, A. A. & Skok, V. I. J. Physiol. 388, 141–152 (1987).

    Article  CAS  Google Scholar 

  17. Colquhoun, D., Ogden, D. C. & Mathie, A. Trends Pharmacol. Sci. 8, 465–472 (1987).

    Article  CAS  Google Scholar 

  18. Cull-Candy, S. G., Howe, J. R. & Ogden, D. C. J. Physiol. 400, 189–222 (1988).

    Article  CAS  Google Scholar 

  19. Schofield, P. R. et al. Nature 328, 221–227 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Grenningloh, G. et al. Nature 328, 215–220 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Paton, W. D. M. & Zaimis, E. J. Br. J. Pharmacol. 6, 155–168 (1951).

    CAS  Google Scholar 

  22. Lipscombe, D. & Rang, H. P. J. Neurosci. 8, 3258–3265 (1988).

    Article  CAS  Google Scholar 

  23. Nathanson, N. A. Rev. Neurosci. 10, 195–236 (1987).

    Article  CAS  Google Scholar 

  24. Bormann, J. Trends Neurosci. 11, 112–116 (1988).

    Article  CAS  Google Scholar 

  25. Sugiyama, H., Ito, I. & Hirono, C. Nature 325, 531–533 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Sladeczek, F., Recasens, M. & Bockaert, J. Trends Neurosci. 11, 545–549 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derkach, V., Surprenant, A. & North, R. 5-HT3 receptors are membrane ion channels. Nature 339, 706–709 (1989). https://doi.org/10.1038/339706a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339706a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing