Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A possible neuronal basis for Doppler-shift compensation in echo-locating horseshoe bats

Abstract

THE auditory system of the horseshoe bat is finely tuned to the bat's individual vocalization frequency1,2. To compensate for flight-induced Doppler shifts in the echo frequency, the horseshoe bat adjusts the frequency of its echo-location call to maintain the echo frequency within the narrow range to which its auditory system is best tuned3,4. In this report I describe neurons in the midbrain tegmentum of the horseshoe bat, with properties that strongly indicate their involvement in this Doppler-shift compensation. The activity of these neurons was influenced by both sound emission and auditory stimuli. Neuronal discharges in response to vocalization, however, differed from those in response to purely auditory stimuli that mimicked the bat call. When an auditory stimulus was temporally locked to a preceding vocalization, the response was dependent on the time delay between the two. This delay-sensitivity completely disappeared when vocalizations were simulated acoustically. Only those vocalization and 'echo' parameters were encoded that occur in Doppler-shift compensation5–7. In conclusion, I suggest a model for the regulation of the vocalization frequency through auditory feedback.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Neuweiler, G. Z. vergl. Physiol. 67, 273–306 (1970).

    Article  Google Scholar 

  2. Neuweiler, G. et al. Behavl Ecol. Sociobiol. 20, 53–67 (1987).

    Article  Google Scholar 

  3. Schnitzler, H. U. Z. vergl. Physiol. 57, 376–408 (1968).

    Article  ADS  Google Scholar 

  4. Schuller, G., Beuter, K. & Schnitzler, H. U. J. comp. Physiol. 89, 275–286 (1974).

    Article  Google Scholar 

  5. Schuller, G. J. comp. Physiol. A158, 239–246 (1986).

    Article  ADS  Google Scholar 

  6. Schuller, G. J. comp. Physiol. 114, 103–114 (1977).

    Article  Google Scholar 

  7. Schuller, G., Beuter, K. & Rubsamen, R. J. comp. Physiol. 97, 113–125 (1975).

    Article  Google Scholar 

  8. Schuller, G. & Pollak, G. D. J. comp. Physiol. 132, 47–54 (1979).

    Article  Google Scholar 

  9. Schuller, G. & Rübsamen, R. J. comp. Physiol. 143, 317–321 (1981).

    Article  Google Scholar 

  10. Schuller, G. & Radtke-Schuller, S. in The Physiological Control of Mammalian Vocalization (ed. Newmann, J.) 67–85 (Plenum, New York, 1989).

    Google Scholar 

  11. Suga, N., Schlegel, P., Shimozawa, T. & Simmons, J. J. acoust. Soc. Am. 54, 793–797 (1973).

    Article  CAS  ADS  Google Scholar 

  12. Kelly, A. H., Beaton, L. E. & Magoun, H. W. J. Neurophysiol. 9, 181–189 (1946).

    Article  CAS  Google Scholar 

  13. Magoun, H. W., Atlas, D., Ingersoll, E. H. & Ranson, S. W. J. Neurol. Psychopathol. 17, 241–255 (1937).

    Article  CAS  Google Scholar 

  14. Metzner, W. in New Frontiers in Brain Research (eds Elsner, N. & Creutzfeldt, O.) 119 (Thieme, Stuttgart and New York, 1987)

    Google Scholar 

  15. Metzner, W. in Dynamics and Plasticity in Neural Systems (eds Elsner, N. & Singer, W.) 289 (Thieme, Stuttgart and New York, 1989)

    Google Scholar 

  16. Henkel, C. K. & Edwards, S. B. J. comp. Neurol. 182, 763–776 (1978).

    Article  CAS  Google Scholar 

  17. Paxinos, G. & Watson, C. The Rat Brain (Academic, Sydney, 1986).

    Google Scholar 

  18. Panneton, W. M. & Martin, G. F. Brain Res. 168, 493–511 (1979).

    Article  CAS  Google Scholar 

  19. Simmons, J. A. J. acoust. Soc. Am. 54, 157–173 (1973).

    Article  CAS  ADS  Google Scholar 

  20. Rübsamen, R. & Schweizer, H. J. comp. Physiol. A159, 689–699 (1986).

    Article  Google Scholar 

  21. Rübsamen, R. & Betz, M. J. comp. Physiol. A159, 675–687 (1986).

    Article  Google Scholar 

  22. Schuller, G., Radtke-Schuller, S. & Betz, M. J. Neurosci. Meth. 18, 339–350 (1986).

    Article  CAS  Google Scholar 

  23. Metzner, W. & Radtke-Schuller, S. J. comp. Physiol. A160, 395–411 (1987).

    Article  CAS  Google Scholar 

  24. Pietsch, G. & Schuller, G. J. comp. Physiol A160, 635–644 (1987).

    Article  Google Scholar 

  25. Adams, J. C., Neuroscience 2, 142–145 (1977).

    Google Scholar 

  26. Mesulam, M. M. J. Histochem. Cytochem. 24, 1273–1280 (1978).

    Article  Google Scholar 

  27. Schuller, G. & Suga, N. J. comp. Physiol. 105, 9–14 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metzner, W. A possible neuronal basis for Doppler-shift compensation in echo-locating horseshoe bats. Nature 341, 529–532 (1989). https://doi.org/10.1038/341529a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341529a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing