Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cortical magnification factor and the ganglion cell density of the primate retina

Abstract

IT has long been contentious whether the large representation of the fovea in the primate visual cortex (VI)1–8 indicates a selective magnification of this part of the retina7, 9–11, or whether it merely reflects the density of retinal ganglion cells12–14. The measurement of the retinal ganglion-cell density is complicated by lateral displacements of cells around the fovea and the presence of displaced amacrine cells in the ganglion cell layer. We have now identified displaced amacrine cells by GABA immunohistochemistry and by retrograde degeneration of ganglion cells. By reconstructing the fovea from serial sections, we were able to compare the densities of cones, cone pedicles and ganglion cells; in this way we found that there are more than three ganglion cells per foveal cone. Between the central and the peripheral retina, the ganglion cell density changes by a factor of 1,000–2,000, which is within the range of estimates of the cortical magnification factor1–8. There is therefore no need to postulate a selective magnification of the fovea in the geniculate and/or the visual cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Talbot, S. A. & Marshall, W. H. Am. J. Ophthalmol. 24, 1255–1264 (1941).

    Article  Google Scholar 

  2. Daniel, P. M. & Whitteridge, D. J. Physiol., Lond. 159, 203–211 (1961).

    Article  CAS  Google Scholar 

  3. Cowey, A. J. Neurophysiol. 27, 366–393 (1964).

    Article  CAS  Google Scholar 

  4. Rolls, E. T. & Cowey, A. Expl Brain Res. 10, 298–310 (1970).

    Article  CAS  Google Scholar 

  5. Hubel, D. H. & Wiesel, T. N. J. comp. Neurol. 158, 295–305 (1974).

    Article  CAS  Google Scholar 

  6. Dow, B. M., Snyder, A. Z., Vautin, R. G. & Bauer, R. Expl Brain Res. 44, 213–228 (1981).

    Article  CAS  Google Scholar 

  7. Van Essen, D. C., Newsome, W. T. & Maunsell, J. H. R. Vision Res. 24, 429–448 (1984).

    Article  CAS  Google Scholar 

  8. Tootell, R. B. H., Switkes, E., Silverman, M. S. & Hamilton, S. L. J. Neurosci. 8, 1531–1568 (1988).

    Article  CAS  Google Scholar 

  9. Malpeli, J. G. & Baker, F. H. J. comp. Neurol. 161, 569–594 (1975).

    Article  CAS  Google Scholar 

  10. Myerson, J., Marris, P. B., Miezin, F. M. & Allman, J. M. Science 198, 855–857 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Perry, V. H. & Cowey, A. Vision Res. 25, 1795–1810 (1985).

    Article  CAS  Google Scholar 

  12. Drasdo, N. Nature 266, 554–556 (1977).

    Article  ADS  CAS  Google Scholar 

  13. Rovamo, J. & Virsu, V. Expl Brain Res. 37, 495–510 (1979).

    Article  CAS  Google Scholar 

  14. Schein, S. J. & de Monasterio, F. M. J. Neurosci. 7, 996–1009 (1987).

    Article  CAS  Google Scholar 

  15. Wong, R. O. L. & Hughes, A. J. comp. Neurol. 255, 159–177 (1987).

    Article  CAS  Google Scholar 

  16. Wässle, H., Chun, M. H., & Müller, F. J. comp. Neurol. 265, 391–408 (1987).

    Article  Google Scholar 

  17. Missotten, L. Invest. Opthalmol. Vis. Sci. 13, 1045–1049 (1974).

    CAS  Google Scholar 

  18. Perry, V. H. & Cowey, A. Neuroscience 25, 225–236 (1988).

    Article  CAS  Google Scholar 

  19. Schein, S. J. J. comp. Neurol. 269, 479–505 (1988).

    Article  CAS  Google Scholar 

  20. Boycott, B. B., Hopkins, J. M. & Sperling, H. G. Proc. R. Soc. B 229, 345–379 (1987).

    ADS  CAS  Google Scholar 

  21. Röhrenbeck, J., Wässle, H. & Boycott, B. B. Eur. J. Neurosci. 1, 407–420 (1989).

    Article  Google Scholar 

  22. Sakitt, B. Vision Res. 22, 417–421 (1982).

    Article  CAS  Google Scholar 

  23. Mallot, H. A. Biol. Cybern. 52, 45–51 (1985).

    Article  CAS  Google Scholar 

  24. Tusa, R. J., Palmer, L. A. & Rosenquist, A. C. J. comp. Neurol. 177, 213–235 (1978).

    Article  CAS  Google Scholar 

  25. Sanderson, K. J. Expl Brain Res. 13, 159–177 (1971).

    CAS  Google Scholar 

  26. Wässle, H. & Chun, M. H. J. comp. Neurol. 297, 43–54 (1989).

    Article  Google Scholar 

  27. Abercrombie, M. Anat. Rec. 94, 239–247 (1946).

    Article  CAS  Google Scholar 

  28. Sterio, D. C. J. Microsc. 134, 127–136 (1984).

    Article  CAS  Google Scholar 

  29. Gundersen, H. J. G. J. Microsc. 143, 3–45 (1986).

    Article  CAS  Google Scholar 

  30. Allen, K. A., Curcio, C. A. & Kalina, R. E. Invest. Ophthalmol. Vis. Sci. 30, 347 (1989).

    Google Scholar 

  31. Penfield, W. & Rasmussen, T. The Cerebral Cortex of Man: A Clinical Study of Localization of Function (Macmillan, New York, 1950).

    Google Scholar 

  32. Koontz, M. A., Hendrickson, A. E. & Ryan, M. K. Vis. Neurosci. 2, 19–25 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wässle, H., Grünert, U., Röhrenbeck, J. et al. Cortical magnification factor and the ganglion cell density of the primate retina. Nature 341, 643–646 (1989). https://doi.org/10.1038/341643a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341643a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing