Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex

Abstract

IN the hippocampus and neocortex, high-frequency (tetanic) stimu-lation of an afferent pathway leads to long-term potentiation (LTP) of synaptic transmission1–5. In the hippocampus it has recently been shown that long-term depression (LTD) of excitatory transmission can also be induced by certain combinations of synaptic activation6,7. In most hippocampal8 and all neocortical pathways4,9–11 studied so far, the induction of LTP requires the activation of JV-methyl-D-aspartate (NMDA) receptorgated conductances. Here we report that LTD can occur in neurons of slices of the rat visual cortex and that the same tetanic stimulation can induce either LTP or LTD depending on the level of depolarization of the postsynaptic neuron. By applying intracellular current injections or pharmacological disinhibition to modify the depolarizing response of the postsynaptic neuron to tetanic stimulation, we show that the mechanisms of induction of LTD and LTP are both postsynaptic. LTD is obtained if postsynaptic depolarization exceeds a critical level but remains below a threshold related to NMDA receptorgated conductances, whereas LTP is induced if this second threshold is reached.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bliss, T. V. P. & Lomo, T. J. Physiol. Lond. 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  2. Komatsu, Y., Toyama, K., Maeda, J. & Sakaguchi, H. Neurosci. Lett. 26, 269–274 (1981).

    Article  CAS  Google Scholar 

  3. Lee, K. S. Brain Res. 239, 617–623 (1982).

    Article  CAS  Google Scholar 

  4. Artola, A. & Singer, W. Nature 330, 649–652 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Perkins, A. T. & Teyler, T. J. Brain Res. 439, 222–229 (1988).

    Article  Google Scholar 

  6. Stanton, P. K. & Sejnowski, T. J. Nature 339, 215–218 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Staubli, U. & Lynch, G. Neurosci. Abstr. 225, 16 (1988).

    Google Scholar 

  8. Collingridge, G. L., Kehl, S. J. & McLennan, H. J. Physiol., Lond. 334, 33–46 (1983).

    Article  CAS  Google Scholar 

  9. Sutor, B. & Hablitz, J. J. Neurosci. Lett. 97, 111–117 (1989).

    Article  CAS  Google Scholar 

  10. Kimura, F., Nishigori, A., Shirokawa, T. & Tsumoto, T. J. Physiol., Lond. 414, 125–144 (1989).

    Article  CAS  Google Scholar 

  11. Artola, A. & Singer, W. Eur. J. Neurosci. 2, 254–269 (1990).

    Article  Google Scholar 

  12. Chagnac-Amitai, Y. & Connors, B. W. J. Neurophysiol. 61, 747–758 (1989).

    Article  CAS  Google Scholar 

  13. Wigström, H. & Gustafsson, B. Nature 301, 603–604 (1983).

    Article  ADS  Google Scholar 

  14. Larson, J. & Lynch, G. Science 232, 985–988 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Reiter, H. O. & Stryker, M. P. Proc. natn. Acad. Sci. U.S.A. 85, 3623–3627 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Bear, M. F., Kleinschmidt, A., Gu, Q. & Singer, W. J. Neurosci. 10, 909–925 (1990).

    Article  CAS  Google Scholar 

  17. Bienenstock, E. L., Cooper, L. N. & Munro, P. W. J. Neurosci. 2, 32–48 (1982).

    Article  CAS  Google Scholar 

  18. Bear, M. F., Cooper, L. N. & Ebner, F. F. Science 237, 42–48 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artola, A., Bröcher, S. & Singer, W. Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347, 69–72 (1990). https://doi.org/10.1038/347069a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347069a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing