Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics

Abstract

A dopamine receptor has been characterized which differs in its pharmacology and signalling system from the D1 or D2 receptor and represents both an autoreceptor and a postsynaptic receptor. The D3 receptor is localized to limbic areas of the brain, which are associated with cognitive, emotional and endocrine functions. It seems to mediate some of the effects of antipsychotic drugs and drugs used against Parkinson's disease, that were previously thought to interact only with D2 receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Spano, P. F., Govoni, S. & Trabucchi, M. Adv. biochem. Psychopharmac. 19, 155–165 (1978).

    CAS  Google Scholar 

  2. Kebabian, J. W. & Calne, D. B. Nature 277, 93–96 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Carlsson, A. & Lindqvist, M. Acta pharmac. toxi. 20, 140–144 (1963).

    Article  CAS  Google Scholar 

  4. Anden, N. E., Butcher, S. G., Corrodi, H., Fuxe, K. & Ungerstedt, U. Eur. J. Pharmac. 11, 303–314 (1970).

    Article  CAS  Google Scholar 

  5. Delay, J. & Deniker, P. Ann. med. Psychol. 110, 267–273 (1952).

    CAS  Google Scholar 

  6. Creese, I., Burt, D. R. & Snyder, S. H. Science 192, 481–483 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Seeman, P., Lee, T., Chau-Wong, M. & Wong, K. Nature 261, 717–719 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Clement-Cormier, Y. C., Kebabian, J. W., Petzold, G. L. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 71, 1113–1117 (1974).

    Article  ADS  CAS  Google Scholar 

  9. Clark, D. & White, F. J. Synapse 1, 347–388 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Dawson, T. M., Gehlert, D. R., Yamamura, H. I., Barnett, A. & Wamsley, J. K. Eur. J. Pharmac. 108, 323–325 (1985).

    Article  CAS  Google Scholar 

  11. Martres, M. P., Bouthenet, M. L., Salès, N., Sokoloff, P. & Schwartz, J. C. Science 228, 752–755 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Palacios, J. M. & Pazos, A. in Dopamine Receptors Vol. 8 (eds Creese, I. & Fraser, C. M.) 175–197 (Liss, New York, 1987).

    Google Scholar 

  13. Sokoloff, P., Martres, M. P. & Schwartz, J. C. Naunyn-Schmiedeberg' s Archs PharmaK. 315, 89–102 (1980).

    Article  CAS  Google Scholar 

  14. Schwartz, J. C. et al. in Catecholamines: Neuropharmacology and Central Nervous System. Theoretical Aspects 59–72 (Liss, New York, 1984).

    Google Scholar 

  15. Leonard, M. N., Halliday, C. A., Marriott, A. S. & Strange, P. G. Biochem. Pharmacol. 37, 4335–4339 (1988).

    Article  CAS  Google Scholar 

  16. Carlsson, A. in Chemical Tools in Catecholamine Research. II: Regulation of Catecholamine Turnover (eds Almgren, O., Carlsson, A. & Engel, J.) 219–225 (North-Holland, Amsterdam, 1975).

    Google Scholar 

  17. Wolf, M. E. & Roth, R. H. in Dopamine Receptors Vol. 8 (eds Creese, I. & Fraser, C. M.) 45–96 (Liss, New York, 1987).

    Google Scholar 

  18. Starke, K., Göthert, M. & Kilbinger, H. Physiol. Rev. 69, 864–989 (1989).

    Article  CAS  Google Scholar 

  19. Bunzow, J. R. et al. Nature 336, 783–787 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Giros, B. et al. Nature 342, 923–926 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Monsma, F. J., McVittie, L. D., Gerfen, C. R., Mahan, L. C. & Sibley, D. R. Nature 342, 926–929 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Dal Toso, R., et al. EMB0 J. 8, 4025–4034 (1989).

    Article  CAS  Google Scholar 

  23. Selbie, L. A., Wayes, G. & Shine, J. DNA 8, 683–689 (1989).

    Article  CAS  Google Scholar 

  24. Puech, A. J., Simon, P. & Boissier, J. R. Eur. J. Pharmac. 50, 291–300 (1978).

    Article  CAS  Google Scholar 

  25. Ljungberg, T. & Ungerstedt, U. Psychopharmacology 56, 239–247 (1978).

    Article  CAS  Google Scholar 

  26. Arnt, J. in Dopamine Receptors Vol. 8 (eds Creese, I. & Fraser, C. M.) 199–231 (Liss, New York, 1987).

    Google Scholar 

  27. Carlsson, A. in Psychopharmacology: A Generation of Progress (eds Lipton, M. A., Di Mascio, A. & Killan, K. F.) 1057–1070 (Raven, New York, 1978).

    Google Scholar 

  28. Snyder, S. H., Greenberg, D. & Yamamura, H. I. J. Psychiat. Res. II, 91–95 (1974).

    Article  Google Scholar 

  29. Kawazaki, E. S. & Wang, P. M. in PCR Technology (ed. Erlich, H. A.) 89–97 (Stockholm Press, 1989).

    Book  Google Scholar 

  30. Kozak, M. Nucleic Acids Res. 12, 857–872 (1984).

    Article  CAS  Google Scholar 

  31. Dohlman, H. G., Caron, M. G. & Lefkowitz, R. J. Biochemistry 26, 2657–2664 (1987).

    Article  CAS  Google Scholar 

  32. O'Malley, K. L. Mack, K. J., Gandelman, K. Y. & Todd, R. D. Biochemistry 29, 1367–1371 (1990).

    Article  CAS  Google Scholar 

  33. Grandy, D. K., et al. Proc. natn. Acad. Sci. U.S.A. 86, 9762–9766 (1989).

    Article  ADS  CAS  Google Scholar 

  34. Strader, D. C., Sigal, S. I. & Dixon, A. F. R. Am. J. Respir. Cell. Molec. Biol. 1, 81–86 (1989).

    Article  CAS  Google Scholar 

  35. Karnik, S. S., Sakmar, T. P., Chen, H. B. & Khorana, H. G. Proc. natn. Acad. Sci. U.S.A. 85, 8459–8463 (1988).

    Article  ADS  CAS  Google Scholar 

  36. Creese, I., Usdin, T. & Snyder, S. H. Nature 278, 577–578 (1979).

    Article  ADS  CAS  Google Scholar 

  37. Svensson, K., Johansson, A. M., Magnusson, T. & Carlsson, A. Naunyn-Schmiedeberg' s Archs Pharmak. 334, 234–245 (1986).

    Article  CAS  Google Scholar 

  38. Birnbaumer, L. A. Rev. Pharmac. Tox. 30, 675–706 (1990).

    Article  CAS  Google Scholar 

  39. Bjorklund, A. & Lindvall, O. in Handbook of Chemical Neuroanatomy Vol. 2: Classical Transmitters in the CNS. Part I. (eds Björklund, A. & Hökfelt, T.) 55–122 (Elsevier, Amsterdam, 1984).

    Google Scholar 

  40. Heimer, L. & Wilson, R. D. in Golgi Centennial Symposium: Perspectives in Neurobiology (ed. Santini, M.) 177–193 (Raven, New York, 1975).

    Google Scholar 

  41. Bouthenet, M. L., Martres, M. P., Salès, N. & Schwartz, J. C. Neuroscience 20, 117–155 (1987).

    Article  CAS  Google Scholar 

  42. Sokoloff, P., Martres, M. P., Delandre, M., Redouane, K. & Schwartz, J. C. Naunyn-Schmiedeberg' s Archs Pharmak. 327, 221–227 (1984).

    Article  CAS  Google Scholar 

  43. Kanehisa, M. Nucleic Acids Res. 12, 203–215 (1984).

    Article  CAS  Google Scholar 

  44. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  45. Emorine, L. et al. Proc. natn. Acad. Sci. U.S.A. 84, 6995–6999 (1987).

    Article  ADS  CAS  Google Scholar 

  46. Graham, F. L. & Van der Eb, A. J. Virology 52, 456–467 (1973).

    Article  CAS  Google Scholar 

  47. Aviv, H. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 69, 1408–1412 (1972).

    Article  ADS  CAS  Google Scholar 

  48. Chirgwin, J. J., Przbyla, A. E., MacDonald, R. J. & Rutter, W. J. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  49. Paxinos, G. & Watson, C. in The Rat Brain Stereotaxic Coordinates (Academic, London, 1982).

    Google Scholar 

  50. Meador-Woodruff, J. H. et al. Proc. natn. Acad. Sci. U.S.A. 86, 7625–7628 (1989).

    Article  ADS  CAS  Google Scholar 

  51. Chomczynski, P. & Sacchi, N. Analyt. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokoloff, P., Giros, B., Martres, MP. et al. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347, 146–151 (1990). https://doi.org/10.1038/347146a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347146a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing