Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons

Abstract

ODORANT signal transduction occurs in the specialized cilia of the olfactory sensory neurons. Considerable biochemical evidence now indicates that this process could be mediated by a G protein-coupled cascade using cyclic AMP as an intracellular second messenger1. A stimulatory G protein α subunit is expressed at high levels in olfactory neurons and is specifically enriched in the cilia2, as is a novel form of adenylyl cyclase3. This implies that the olfactory transduction cascade might involve unique molecular components. Electrophysiological studies have identified a cyclic nucleotide-activated ion channel in olfactory cilia4. These observa-tions provide evidence for a model in which odorants increase intracellular cAMP concentration, which in turn activates this channel and depolarizes the sensory neuron. An analogous cascade regulating a cGMP-gated channel mediates visual transduction in photoreceptor cells (see refs 5,6 for review). The formal similarities between olfactory and visual transduction suggest that the two systems might use homologous channels. Here we report the molecular cloning, functional expression and characterization of a channel that is likely to mediate olfactory transduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pace, U., Hanski, E., Salomon, Y. & Lancet, D. Nature 316, 255–258 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Jones, D. T. & Reed, R. R. Science 244, 730–736 (1989).

    Google Scholar 

  3. Pfeuffer, E., Mollner, S., Lancet, D. & Pfeuffer, T. J. biol. Chem. 264, 18803–18807 (1989).

    CAS  PubMed  Google Scholar 

  4. Nakamura, T. & Gold, G. H. Nature 325, 442–444 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Stryer, L. A. Rev. Neurosci. 9, 87–119 (1986).

    Article  CAS  Google Scholar 

  6. Yau, K.-W. & Baylor, D. A. A. Rev. Neurosci. 12, 289–327 (1989).

    Article  CAS  Google Scholar 

  7. Kaupp, U. B. et al. Nature 342, 762–766 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Jones, D. T., Barbosa, E. & Reed, R. R. Cold Spring Harb. Symp. quant Biol. 53, 349–353 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Gorman, C. M., Gies, D. R. & McCray, G. DNA and Protein Engineering Techniques 2, 3–9 (1990).

    Google Scholar 

  10. Pritchett, D. B. et al. Science 242, 1306–1308 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. 391, 85–100 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka, J. C., Eccleston, J. F. & Furman, R. E. Biochemistry 28, 2776–2784 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Dhallan, R. S., Haynes, L. W. & Yau, K.-W. Biophys. J. 57, 367a (1990).

    Google Scholar 

  14. Koch, K.-W. & Kaupp, U. B. J. biol. Chem. 260, 6788–6800 (1985).

    CAS  PubMed  Google Scholar 

  15. Karpen, J. W., Zimmerman, A. L., Stryer, L. & Baylor, D. A. Proc. natn. Acad. Sci. U.S.A. 85, 1287–1291 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Haynes, L. W. & Yau, K.-W. Biophys. J. 57, 366a (1990).

    Article  Google Scholar 

  17. Hodgkin, A. L. & Katz, B. J. Physiol., Lond. 108, 37–77 (1949).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kurahashi, T. J. Physiol., Lond. 419, 177–192 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Firestein, S. & Werblin, F. Science 244, 79–81 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Kozak, M. Nucleic Acids Res. 12, 857–872 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kyte, J. & Doolittle, R. F. J. Molec. Biol. 157, 105–132 (1982).

    Article  CAS  PubMed  Google Scholar 

  22. Nathans, J. & Hogness, D. Cell 34, 807–814 (1983).

    Article  CAS  PubMed  Google Scholar 

  23. Jones, D. T. & Reed, R. R. J. biol. Chem. 262, 14241–14249 (1987).

    CAS  PubMed  Google Scholar 

  24. Nakatani, K. & Yau, K.-W. J. Physiol., Lond. 395, 695–729 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhallan, R., Yau, KW., Schrader, K. et al. Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature 347, 184–187 (1990). https://doi.org/10.1038/347184a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347184a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing