Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Induction of neurogenesis in the neocortex of adult mice

Abstract

Neurogenesis normally only occurs in limited areas of the adult mammalian brain—the hippocampus1, olfactory bulb2,3,4 and epithelium5, and at low levels in some regions of macaque cortex6. Here we show that endogenous neural precursors can be induced in situ to differentiate into mature neurons, in regions of adult mammalian neocortex that do not normally undergo any neurogenesis. This differentiation occurs in a layer- and region-specific manner, and the neurons can re-form appropriate corticothalamic connections. We induced synchronous apoptotic degeneration7,8 of corticothalamic neurons in layer VI of anterior cortex of adult mice and examined the fates of dividing cells within cortex, using markers for DNA replication (5-bromodeoxyuridine; BrdU) and progressive neuronal differentiation. Newly made, BrdU-positive cells expressed NeuN, a mature neuronal marker, in regions of cortex undergoing targeted neuronal death and survived for at least 28 weeks. Subsets of BrdU+ precursors expressed Doublecortin, a protein found exclusively in migrating neurons9,10, and Hu, an early neuronal marker11,12. Retrograde labelling from thalamus demonstrated that BrdU+ neurons can form long-distance corticothalamic connections. Our results indicate that neuronal replacement therapies for neurodegenerative disease and CNS injury may be possible through manipulation of endogenous neural precursors in situ.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Newly generated BrdU+ cells can be induced to differentiate into neurons, in regions of cortex undergoing targeted apoptotic degeneration of corticothalamic neurons.
Figure 2: New cells express the migratory neuronal marker Doublecortin (Dcx) two weeks after induction of apoptosis.
Figure 3: Newly generated BrdU+ cells express the early neuronal marker Hu in experimental cortex.
Figure 4: Newly generated BrdU+ neurons in experimental cortex extend long-distance projections to thalamus.

Similar content being viewed by others

References

  1. Altman, J. & Das, G. D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–335 ( 1965).

    Article  CAS  PubMed  Google Scholar 

  2. Altman, J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J. Comp. Neurol. 137, 433–457 ( 1969).

    Article  CAS  PubMed  Google Scholar 

  3. Luskin, M. B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Lois, C. & Alvarez-Buylla, A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc. Natl Acad. Sci. USA 90, 2074–2077 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaplan, M. S. & Hinds, J. W. Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197, 1092–1094 ( 1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Gould, E., Reeves, A. J., Graziano, M. S. A. & Gross, C. G. Neurogenesis in the neocortex of adult primates. Science 286, 548–552 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Macklis, J. D. Transplanted neocortical neurons migrate selectively into regions of neuronal degeneration produced by chromophore-targeted laser photolysis. J. Neurosci. 13, 3848–3863 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sheen, V. L. & Macklis, J. D. Targeted neocortical cell death in adult mice guides migration and differentiation of transplanted embryonic neurons. J. Neurosci. 15, 8378– 8392 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gleeson, J. G., Lin, P. T., Flanagan, L. A. & Walsh, C. A. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23, 257– 271 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Francis, F. et al. Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23, 247–256 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  11. Marusich, M. F., Furneaux, H. M., Henion, P. D. & Weston, J. A. Hu neuronal proteins are expressed in proliferating neurogenic cells. J. Neurobiol 25, 143–155 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Barami, K., Iversen, K., Furneaux, H. & Goldman, S. A. Hu protein as an early marker of neuronal phenotypic differentiation by subependymal zone cells of the adult songbird forebrain. J. Neurobiol. 28, 82–101 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Reh, T. A. Cell-specific regulation of neuronal production in the larval frog retina. J. Neurosci. 7, 3317–3324 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Parent, J. M. et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J. Neurosci. 17, 3727– 3738 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Snyder, E. Y., Yoon, C., Flax, J. D. & Macklis, J. D. Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc. Natl Acad. Sci. USA 94, 11663–11668 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kirn, J. R. & Nottebohm, F. Direct evidence for loss and replacement of projection neurons in adult canary brain. J. Neurosci. 13, 1654–1663 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gould, E. & Cameron, H. A. Regulation of neuronal birth, migration and death in the rat dentate gyrus. Dev. Neurosci. 18, 22–35 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, Y., Sheen, V. L. & Macklis, J. D. Cortical interneurons upregulate neurotrophins in vivo in response to targeted apoptotic degeneration of neighboring pyramidal neurons. Exp. Neurol. 154, 389 –402 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Hernit-Grant, C. S. & Macklis, J. D. Embryonic neurons transplanted to regions of targeted photolytic cell death in adult mouse somatosensory cortex re-form specific callosal projections. Exp. Neurol. 139, 131–142 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Shin, J. S. Transplanted neuroblasts differentiate appropriately into projection neurons with the correct neurotransmitter and receptor phenotype in neocortex undergoing targeted projection neuron neurodegeneration. J. Neurosci. (in the press).

  21. Scharff, C. et al. Targeted neuronal death affects neuronal replacement and vocal behavior in adult songbirds. Neuron 25, 481–492 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Palmer, T. D. et al. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J. Neurosci. 19, 8487–8497 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707– 1710 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Richards, L. J., Kilpatrick, T. J. & Bartlett, P. F. De novo generation of neuronal cells from the adult mouse brain. Proc. Natl Acad. Sci. USA 89 , 8591–8595 (1992).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vescovi, A. L., Reynolds, B. A., Fraser, D. D. & Weiss, S. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11, 951–966 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  26. Morshead, C. M. et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13, 1071–1082 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Craig, C. G. et al. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci. 16, 2649–2658 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuhn, H. G. et al. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17, 5820–5829 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zigova, T., Pencea, V., Wiegand, S. J. & Luskin, M. B. Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol. Cell. Neurosci. 11, 234–245 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Cameron, H. A., Hazel, T. G. & McKay, R. D. Regulation of neurogenesis by growth factors and neurotransmitters. J. Neurobiol. 36, 287 –306 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Guillery, R. W. & Herrup, K. Quantification without pontification: choosing a method for counting objects in sectioned tissues. J. Comp. Neurol. 386, 2– 7 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Gleeson, S. Goldman, M. Marusich, C. Walsh, and P. Follett for reagents; M. Christian and C. Tai for technical assistance; L. Catapano, P. Follett, R. Fricker, M. Gates, and J. Gleeson for discussions; and L. Benowitz, M. Greenberg, L. Kunkel, and C. Walsh for critical reading. This work was supported by grants from the NIH (J.D.M.), Alzheimer's Association (J.D.M.), Human Frontiers Science Program (J.D.M.), an NIH predoctoral training grant (S.S.M.), and a postdoctoral fellowship from the Canadian MRC (B.R.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Macklis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magavi, S., Leavitt, B. & Macklis, J. Induction of neurogenesis in the neocortex of adult mice. Nature 405, 951–955 (2000). https://doi.org/10.1038/35016083

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35016083

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing