Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fringe is a glycosyltransferase that modifies Notch

Abstract

Notch receptors function in highly conserved intercellular signalling pathways that direct cell-fate decisions, proliferation and apoptosis in metazoans. Fringe proteins can positively and negatively modulate the ability of Notch ligands to activate the Notch receptor. Here we establish the biochemical mechanism of Fringe action. Drosophila and mammalian Fringe proteins possess a fucose-specific β1,3 N-acetylglucosaminyltransferase activity that initiates elongation of O-linked fucose residues attached to epidermal growth factor-like sequence repeats of Notch. We obtained biological evidence that Fringe-dependent elongation of O-linked fucose on Notch modulates Notch signalling by using co-culture assays in mammalian cells and by expression of an enzymatically inactive Fringe mutant in Drosophila . The post-translational modification of Notch by Fringe represents a striking example of modulation of a signalling event by differential receptor glycosylation and identifies a mechanism that is likely to be relevant to other signalling pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Manic Fringe elongates the O-linked fucose saccharides on full-length Notch1 and Notch1 EGF repeats 19–23.
Figure 2: Lunatic, Manic and Drosophila Fringe catalyse the transfer of GlcNAc from UDP-[3H]GlcNAc to fucose in vitro.
Figure 3: Lunatic, Manic and Drosophila Fringe are fucose-specific β1,3 GlcNAc-transferases.
Figure 4: O-linked fucose is required for Jagged1-dependent activation of Notch and Fringe inhibition of CBF1 activation.
Figure 5: Mutation of a conserved acidic patch in Fringe renders it biologically inactive.
Figure 6: Fringe modulates Notch signalling by elongation of O-linked fucose on Notch EGF repeats.

Similar content being viewed by others

References

  1. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signalling: Cell fate control and signal integration in development. Science 284, 770– 776 (1999).

    Article  ADS  CAS  Google Scholar 

  2. Joutel, A. & Tournier-Lasserve, E. Notch signalling pathway and human diseases. Semin. Cell Dev. Biol. 9, 619–625 (1998).

    Article  CAS  Google Scholar 

  3. Panin, V. M. & Irvine, K. D. Modulators of Notch signalling. Semin. Cell Dev. Biol. 9, 609– 617 (1998).

    Article  CAS  Google Scholar 

  4. Panin, V. M., Papayannopoulos, V., Wilson, R. & Irvine, K. D. Fringe modulates notch ligand interactions. Nature 387, 908–912 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Fleming, R. J., Gu, Y. & Hukriede, N. A. Serrate-mediated activation of Notch is specifically blocked by the product of the gene fringe in the dorsal compartment of the Drosophila wing imaginal disc. Development 124, 2973–2981 ( 1997).

    CAS  PubMed  Google Scholar 

  6. Klein, T. & Arias, A. M. Interactions among Delta, Serrate and Fringe modulate Notch activity during Drosophila wing development. Development 125, 2951– 2962 (1998).

    CAS  PubMed  Google Scholar 

  7. Irvine, K. D. & Wieschaus, E. fringe, a boundary-specific signalling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell 79, 595–606 (1994).

    Article  CAS  Google Scholar 

  8. Irvine, K. D. Fringe, Notch, and making developmental boundaries. Curr. Opin. Genet. Dev. 9, 434–441 ( 1999).

    Article  CAS  Google Scholar 

  9. Irvine, K. D. & Vogt, T. F. Dorsal–ventral signalling in limb development. Curr. Opin. Cell Biol. 9, 867–876 (1997).

    Article  CAS  Google Scholar 

  10. Johnston, S. H. et al. A family of mammalian Fringe genes implicated in boundary determination and the Notch pathway. Development 124 , 2245–2254 (1997).

    CAS  PubMed  Google Scholar 

  11. Cohen, B. et al. Fringe boundaries coincide with Notch-dependent patterning centres in mammals and alter Notch-dependent development in Drosophila. Nature Genet. 16, 283–288 (1997).

    Article  CAS  Google Scholar 

  12. Yuan, Y. P., Schultz, J., Mlodzik, M. & Bork, P. Secreted fringe-like signaling molecules may be glycosyltransferases. Cell 88, 9–11 (1997).

    Article  CAS  Google Scholar 

  13. Moloney, D. J. et al. Mammalian Notch1 is modified with two unusual forms of O-linked glycosylation found on Epidermal Growth Factor-like modules. J. Biol. Chem. 275, 9604– 9611 (2000).

    Article  CAS  Google Scholar 

  14. Harris, R. J. & Spellman, M. W. O-linked fucose and other post-translational modifications unique to EGF modules. Glycobiology 3, 219–224 ( 1993).

    Article  CAS  Google Scholar 

  15. Moloney, D. J., Lin, A. I. & Haltiwanger, R. S. The O-linked fucose glycosylation pathway: evidence for protein specific elongation of O-linked fucose in Chinese hamster ovary cells. J. Biol. Chem. 272, 19046–19050 (1997).

    Article  CAS  Google Scholar 

  16. Stanley, P., Narasimhan, S., Siminovitch, L. & Schachter, H. Chinese hamster ovary cells selected for resistance to the cytotoxicity of phytohemagglutinin are deficient in a UDP-N-acetylglucosamine-glycoprotein N-acetylglucosaminyltransferase activity. Proc. Natl Acad. Sci. USA 72, 3323–3327 ( 1975).

    Article  ADS  CAS  Google Scholar 

  17. Robertson, M. A., Etchison, J. R., Robertson, J. S., Summers, D. F. & Stanley, P. Specific changes in the oligosaccharide moieties of VSV grown in different lectin-resistant CHO cells. Cell 13, 515–526 ( 1978).

    Article  CAS  Google Scholar 

  18. Moloney, D. J. & Haltiwanger, R. S. The O-linked fucose glycosylation pathway: Identification and characterization of a UDP-glucose: O-fucose β1,3-glucosyltransferase. Glycobiology 9, 679–687 (1999).

    Article  CAS  Google Scholar 

  19. Kao, Y. -H. et al. The effect of O-fucosylation on the first EGF-like domain from human blood coagulation Factor VII. Biochemistry 38, 7097—7110 (1999).

    Article  Google Scholar 

  20. Beyer, T. A., Sadler, J. E., Rearick, J. I., Paulson, J. C. & Hill, R. L. Glycosyltransferases and their use in assessing oligosaccharide structure and structure-function relationships. Adv. Enzymol. 52, 23–175 (1981).

    CAS  PubMed  Google Scholar 

  21. Lindsell, C. E., Shawber, C. J., Boulter, J. & Weinmaster, G. Jagged: A mammalian ligand that activates Notch1. Cell 80, 909–917 (1995).

    Article  CAS  Google Scholar 

  22. Hicks, C., Johnston, S. H., DiSibio, G., Collazo, A., Vogt, T. F. & Weinmaster, G. Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2 receptors in mammalian cells. Nature Cell Biol. (in the press).

  23. Hsieh, J. J., Henkel, T., Salmon, P., Robey, E., Peterson, M. G. & Hayward, S. D. Truncated mammalian Notch1 activates CBF1/RBPJk-repressed genes by a mechanism resembling that of Epstein–Barr virus EBNA2. Mol. Cell. Biol. 16, 952–959 ( 1996).

    Article  CAS  Google Scholar 

  24. Ripka, J. & Stanley, P. Lectin-resistant CHO cells: Selection of four new pea lectin-resistant phenotypes. Som. Cell Mol. Gen. 12, 51–62 ( 1986).

    Article  CAS  Google Scholar 

  25. Ripka, J., Adamany, A. & Stanley, P. Two Chinese hamster ovary glycosylation mutants affected in the conversion of GDP-mannose to GDP-fucose. Arch. Biochem. Biophys. 249, 533–545 ( 1986).

    Article  CAS  Google Scholar 

  26. Sullivan, F. X. et al. Molecular cloning of human GDP-mannose 4,6-dehydratase and reconsititution of GDP-fucose biosynthesis in vitro. J. Biol. Chem. 273, 8193–8202 ( 1998).

    Article  CAS  Google Scholar 

  27. Ohyama, C. et al. Molecular cloning and expression of GDP-D-mannose-4,6-dehydratase, a key enzyme for fucose metabolism defective in Lec13 cells. J. Biol. Chem. 273, 14582–14587 (1998).

    Article  CAS  Google Scholar 

  28. Wiggins, C. A. R. & Munro, S. Activity of the yeast MNN1 α-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proc. Natl Acad. Sci. USA 95, 7945–7950 ( 1998).

    Article  ADS  CAS  Google Scholar 

  29. Zhang, Y., Malinovskii, V. A., Fiedler, T. J. & Brew, K. Role of a conserved acidic cluster in bovine β1,4 galactosyltransferase-1 probed by mutagenesis of a bacterially expressed recombinant enzyme. Glycobiology 9, 815–822 (1999).

    Article  CAS  Google Scholar 

  30. Kim, J., Irvine, K. D. & Carroll, S. B. Cell recognition, signal induction, and symmetrical gene activation at the dorsal–ventral boundary of the developing Drosophila wing. Cell 82, 795– 802 (1995).

    Article  CAS  Google Scholar 

  31. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 ( 1993).

    CAS  Google Scholar 

  32. Ju, B. -G. et al. Fringe forms a complex with Notch. Nature 405, 191–195 (2000).

    Article  ADS  CAS  Google Scholar 

  33. Rebay, I. et al. Specific EGF repeats of Notch mediate interactions with Delta and Serrate: Implications for Notch as a multifunctional receptor. Cell 67, 687–699 ( 1991).

    Article  CAS  Google Scholar 

  34. Klueg, K. M. & Muskavitch, M. A. Ligand–receptor interactions and trans-endocytosis of Delta, Serrate and Notch: members of the Notch signaling pathway in Drosophila. J. Cell Sci. 112, 3289–3297 (1999).

    CAS  PubMed  Google Scholar 

  35. Kelley, M. R., Kidd, S., Deutsch, W. A. & Young, M. W. Mutations altering the structure of Epidermal Growth Factor-like coding sequences of the Drosophila notch locus. Cell 51, 539–548 (1987).

    Article  CAS  Google Scholar 

  36. De Celis, J. F. & García-Bellido, A. Roles of the Notch gene in Drosophila wing morphogenesis. Mech. Dev. 46, 109–122 ( 1994).

    Article  CAS  Google Scholar 

  37. De Celis, J. F. & Bray, S. J. The Abruptex domain of Notch regulates negative interactions between Notch, its ligands and Fringe. Development 127, 1291– 1302 (2000).

    CAS  PubMed  Google Scholar 

  38. Kornfeld, S. Diseases of abnormal protein glycosylation: An emerging area. J. Clin. Invest. 101, 1293–1295 (1998).

    Article  CAS  Google Scholar 

  39. Lubke, T., Marquardt, T., von Figura, K. & Korner, C. A new type of carbohydrate-deficient glycoprotein syndrome due to a decreased import of GDP-fucose into the Golgi . J. Biol. Chem. 274, 25986–25989 (1999).

    Article  CAS  Google Scholar 

  40. Perrimon, N. & Bernfield, M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404 , 725–728 (2000).

    Article  ADS  CAS  Google Scholar 

  41. MacArthur, C. A., Lawshe, A., Shankar, D. B., Heikinheimo, M. & Shackleford, G. M. FGF-8 isoforms differ in NIH3T3 cell transforming potential. Cell Growth Differ. 6, 817–825 (1995).

    CAS  PubMed  Google Scholar 

  42. Lu, F. M. & Lux, S. E. Constitutively active human Notch1 binds to the transcription factor CBF1 and stimulates transcription through a promoter containing a CBF1-responsive element. Proc. Natl Acad. Sci. USA 93, 5663–5667 ( 1996).

    Article  ADS  CAS  Google Scholar 

  43. Cheng, H. J., Nakamoto, M., Bergemann, A. D. & Flanagan, J. G. Complementary gradients in expression and binding of Elf-1 and Mek-4 in development of the topographic retinotectal projection map. Cell 82, 371–381 (1995).

    Article  CAS  Google Scholar 

  44. Kotenko, S. V., Saccani, S., Izotova, L. S., Mirochnitchenko, O. V. & Pestka, S. Human cytomegalovirus harbors its own unique interleukin-10 homolog (cmvIL-10). Proc. Natl Acad. Sci. USA 97, 1695–1700 (2000).

    Article  ADS  CAS  Google Scholar 

  45. Rebay, I., Fehon, R. G. & Artavanis-Tsakonas, S. Specific truncations of Drosophila Notch define dominant activated and dominant negative forms of the receptor. Cell 74, 319–329 (1993).

    Article  CAS  Google Scholar 

  46. Hirschberg, C. B., Robbins, P. W. & Abeijon, C. Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu. Rev. Biochem. 67, 49–69 (1998).

    Article  CAS  Google Scholar 

  47. Brou, C. et al. A novel proteolytic cleavage involved in Notch signalling: The role of the disintegrin-metalloprotease TACE. Mol. Cell 5, 207–216 (2000).

    Article  CAS  Google Scholar 

  48. Mumm, J. S. et al. A ligand-induced extracellular cleavage regulates γ-secretase-like proteolytic activation of Notch1. Mol. Cell 5, 197–206 (2000).

    Article  CAS  Google Scholar 

  49. De Strooper, B. et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular fragment. Nature 398 , 518–522 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Matta for disaccharide standards; K. Severinov for advice on protein purification; T. Correia, S. Narula and S. Sundaram for technical assistance; the Developmental Studies Hybridoma Bank; S. Lux and S. Kotenko for antibodies; G. Weinmaster for Jagged1-expressing mouse L cells and co-culture reagents; J. Flanagan for the AP-Tag plasmid; D. Hayward for CBF1-luciferase reporter plasmid JH26; J. Nye for the mouse Notch1 plasmid; S. Kotenko for Flag expression plasmid; and J. Botas and the Bloomington Stock Center for Drosophila stocks. We thank our colleagues for comments on the manuscript. S.H.J. was supported as a Harold W. Dodds Fellow of the Princeton University Graduate Program. Research in K.D.I.'s laboratory was supported by a GM NIH grant, and by Charles and Joanna Busch fellowships to V.P. and R.W. Research in R.S.H.'s laboratory was supported by a Grant Award from Neose Technologies, Inc. Research in P.S.'s laboratory was supported by a NIH/NCI grant and a NCI Comprehensive Cancer Center grant. Research in T.F.V's lab was supported by an NIH grant and a gift to the Department of Molecular Biology by the Rathmann Family Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pamela Stanley, Kenneth D. Irvine, Robert S. Haltiwanger or Thomas F. Vogt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moloney, D., Panin, V., Johnston, S. et al. Fringe is a glycosyltransferase that modifies Notch. Nature 406, 369–375 (2000). https://doi.org/10.1038/35019000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35019000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing