Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell division

Asymmetric cell division during animal development

Key Points

Summary

  • One mechanism for generating cellular diversity during development is to segregate cell-fate determinants predominantly into one daughter cell upon division. This review emphasizes the molecular parallels that are emerging for this process in different species.

  • In Caenorhabditis elegans, size asymmetry and segregation of cell-fate determinants during the first division of the zygote is mediated by the PAR proteins.

  • In the Drosophila central nervous system, neural precursors divide asymmetrically. Cell-fate determinants, including Miranda, Prospero and Numb, are localized to the basal cortex of neuroblasts during this division. The correlation between spindle orientation and crescent formation in neuroblasts is established by Inscuteable.

  • Homologues of PAR-3, atypical protein kinase C and PAR-6 mediate polarity in flies and mammals. In flies, they direct epithelial cell polarity and mediate both spindle orientation and localization of cell-fate determinants in neuroblasts. In vertebrates, this complex might polarize the actin cytoskeleton of epithelial cells by recruiting cdc42.

  • Other asymmetric divisions in the worm and the Drosophila peripheral nervous system are directed by extracellular cues that use the wingless receptor, Frizzled.

  • A common component for both intrinsically and extrinsically established asymmetry in worm, yeast and Dictyostelium might be heterotrimeric G proteins. In flies, this link is through the Inscuteable-binding protein Pins, which also contains binding domains for heterotrimeric G-protein α-subunits.

  • In worms and flies, localization seems to be an actin-dependent process. In flies, lethal(2) giant larvae is required for basal localization of cell-fate determinants in neuroblasts. It binds cytoplasmic myosin heavy chain, providing a direct link to the actin cytoskeleton.

  • There are homologues of many of these factors in mammals and growing evidence for a conserved role in the developing nervous system. For example, asymmetric localization of Numb and Notch homologues have been observed in mammalian nervous system stem cells.

Abstract

Although most cells produce two equal daughters during mitosis, some can divide asymmetrically by segregating protein determinants into one of their two daughter cells. Interesting parallels exist between such asymmetric divisions and the polarity established in epithelial cells, and heterotrimeric G proteins might connect these aspects of cell polarity. The discovery of asymmetrically segregating proteins in vertebrates indicates that the results obtained in invertebrate model organisms might also apply to mammalian stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General concept for the orientation of asymmetric cell divisions.
Figure 2: Asymmetric cell division in the C. elegans zygote.
Figure 3: Asymmetric cell division in Drosophila neuroblasts.
Figure 4: Orientation of division in Drosophila neuroblasts.
Figure 5: Frizzled receptors direct asymmetric cell division in response to extracellular signals.
Figure 6: Function of heterotrimeric G proteins in cell polarity.
Figure 7: A potential mechanism for asymmetric cell division in vertebrate neural precursor cells.

Similar content being viewed by others

References

  1. Horvitz, H. R. & Herskowitz, I. Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell 68, 237–255 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 ( 1983).

    CAS  PubMed  Google Scholar 

  3. Guo, S. & Kemphues, K. J. Molecular genetics of asymmetric cleavage in the early Caenorhabditis elegans embryo. Curr. Opin. Genet. Dev. 6, 408–415 (1996).

    CAS  PubMed  Google Scholar 

  4. Kemphues, K. PARsing embryonic polarity. Cell 101, 345 –348 (2000).

    CAS  PubMed  Google Scholar 

  5. Rose, L. S. & Kemphues, K. J. Early patterning of the C. elegans embryo. Annu. Rev. Genet. 32, 521–545 (1998).

    CAS  PubMed  Google Scholar 

  6. Schubert, C. M., Lin, R., de Vries, C. J., Plasterk, R. H. & Priess, J. R. MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos. Mol. Cell 5, 671–682 (2000).

    CAS  PubMed  Google Scholar 

  7. Kemphues, K. J., Priess, J. R., Morton, D. G. & Cheng, N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52, 311– 320 (1988).This report describes the identification of PAR genes, which turned out to be a conserved machinery for orientating asymmetric cell division.

    CAS  PubMed  Google Scholar 

  8. Etemad-Moghadam, B., Guo, S. & Kemphues, K. J. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos . Cell 83, 743–752 (1995).

    CAS  PubMed  Google Scholar 

  9. Hung, T. J. & Kemphues, K. J. PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos . Development 126, 127– 135 (1999).

    CAS  PubMed  Google Scholar 

  10. Tabuse, Y. et al. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 125, 3607–3614 ( 1998).

    CAS  PubMed  Google Scholar 

  11. Watts, J. L. et al. par-6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR-3. Development 122, 3133– 3140 (1996).

    CAS  PubMed  Google Scholar 

  12. Cheng, N. N., Kirby, C. M. & Kemphues, K. J. Control of cleavage spindle orientation in Caenorhabditis elegans: the role of the genes par-2 and par-3. Genetics 139, 549–559 ( 1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Boyd, L., Guo, S., Levitan, D., Stinchcomb, D. T. & Kemphues, K. J. PAR-2 is asymmetrically distributed and promotes association of P granules and PAR-1 with the cortex in C. elegans embryos . Development 122, 3075– 3084 (1996).

    CAS  PubMed  Google Scholar 

  14. Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995). This report describes the cloning of PAR-1, the first asymmetrically segregating protein in C. elegans.

    CAS  PubMed  Google Scholar 

  15. Hirata, J., Nakagoshi, H., Nabeshima, Y. & Matsuzaki, F. Asymmetric segregation of the homeodomain protein Prospero during Drosophila development. Nature 377, 627– 630 (1995).

    CAS  PubMed  Google Scholar 

  16. Knoblich, J. A., Jan, L. Y. & Jan, Y. N. Asymmetric segregation of Numb and Prospero during cell division. Nature 377, 624– 627 (1995).

    CAS  PubMed  Google Scholar 

  17. Spana, E. P. & Doe, C. Q. The Prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development 121, 3187– 3195 (1995).

    CAS  PubMed  Google Scholar 

  18. Li, P., Yang, X., Wasser, M., Cai, Y. & Chia, W. Inscuteable and Staufen mediate asymmetric localization and segregation of Prospero RNA during Drosophila neuroblast cell divisions. Cell 90, 437–447 ( 1997).

    CAS  PubMed  Google Scholar 

  19. Broadus, J., Fuerstenberg, S. & Doe, C. Q. Staufen-dependent localization of Prospero mRNA contributes to neuroblast daughter-cell fate. Nature 391, 792–795 (1998).

    CAS  PubMed  Google Scholar 

  20. Schuldt, A. J. et al. Miranda mediates asymmetric protein and RNA localization in the developing nervous system. Genes Dev. 12, 1847–1857 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shen, C. P., Jan, L. Y. & Jan, Y. N. Miranda is required for the asymmetric localization of Prospero during mitosis in Drosophila. Cell 90, 449–458 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Ikeshima-Kataoka, H., Skeath, J. B., Nabeshima, Y., Doe, C. Q. & Matsuzaki, F. Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature 390, 625–629 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  23. Rhyu, M. S., Jan, L. Y. & Jan, Y. N. Asymmetric distribution of Numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells . Cell 76, 477–491 (1994). The first report describing an asymmetrically segregating determinant during somatic cell division.

    CAS  PubMed  Google Scholar 

  24. Lu, B., Rothenberg, M., Jan, L. Y. & Jan, Y. N. Partner of Numb colocalizes with Numb during mitosis and directs Numb asymmetric localization in Drosophila neural and muscle progenitors. Cell 95, 225–235 ( 1998).

    CAS  PubMed  Google Scholar 

  25. Vaessin, H. et al. prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell 67, 941– 953 (1991).

    CAS  PubMed  Google Scholar 

  26. Doe, C. Q., Chu-LaGraff, Q., Wright, D. M. & Scott, M. P. The prospero gene specifies cell fates in the Drosophila central nervous system. Cell 65, 451– 464 (1991).

    CAS  PubMed  Google Scholar 

  27. Uemura, T., Shepherd, S., Ackerman, L., Jan, L. Y. & Jan, Y. N. numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 58, 349–360 ( 1989).

    CAS  PubMed  Google Scholar 

  28. Carmena, A., Murugasu-Oei, B., Menon, D., Jimenez, F. & Chia, W. Inscuteable and numb mediate asymmetric muscle progenitor cell divisions during Drosophila myogenesis. Genes Dev. 12, 304–315 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Buescher, M. et al. Binary sibling neuronal cell fate decisions in the Drosophila embryonic central nervous system are nonstochastic and require inscuteable -mediated asymmetry of ganglion mother cells. Genes Dev. 12, 1858–1870 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ruiz Gomez, M. & Bate, M. Segregation of myogenic lineages in Drosophila requires numb. Development 124, 4857–4866 ( 1997).

    CAS  PubMed  Google Scholar 

  31. Park, M., Yaich, L. E. & Bodmer, R. Mesodermal cell fate decisions in Drosophila are under the control of the lineage genes numb, notch, and sanpodo. Mech. Dev. 75, 117– 126 (1998).

    CAS  PubMed  Google Scholar 

  32. Spana, E. P., Kopczynski, C., Goodman, C. S. & Doe, C. Q. Asymmetric localization of numb autonomously determines sibling neuron identity in the Drosophila CNS. Development 121, 3489–3494 (1995).

    CAS  PubMed  Google Scholar 

  33. Guo, M., Jan, L. Y. & Jan, Y. N. Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17, 27–41 (1996).

    PubMed  Google Scholar 

  34. Frise, E., Knoblich, J. A., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. The Drosophila Numb protein inhibits signaling of the Notch receptor during cell–cell interaction in sensory organ lineage. Proc. Natl Acad. Sci. USA 93, 11925–11932 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kraut, R., Chia, W., Jan, L. Y., Jan, Y. N. & Knoblich, J. A. Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature 383, 50–55 (1996). Describes the first protein that couples determinant segregation to spindle orientation and seems to establish the axis of polarity.

    CAS  PubMed  Google Scholar 

  36. Kraut, R. & Campos-Ortega, J. A. inscuteable, a neural precursor gene of Drosophila, encodes a candidate for a cytoskeleton adaptor protein. Dev. Biol. 174, 65– 81 (1996).

    CAS  PubMed  Google Scholar 

  37. Kaltschmidt, J. A., Davidson, C. M., Brown, N. H. & Brand, A. H. Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nature Cell Biol. 2, 7–12 (2000). [PubMed]

    CAS  PubMed  Google Scholar 

  38. Schober, M., Schaefer, M. & Knoblich, J. A. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402, 548–551 (1999).

    CAS  PubMed  Google Scholar 

  39. Wodarz, A., Ramrath, A., Kuchinke, U. & Knust, E. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402, 544– 547 (1999). References 38 and 39 reveal a potential mechanism that orients asymmetric cell division along one of the body axis, in this case the apical–basal axis.

    CAS  PubMed  Google Scholar 

  40. Kuchinke, U., Grawe, F. & Knust, E. Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr. Biol. 8, 1357–1365 (1998).

    CAS  PubMed  Google Scholar 

  41. Muller, H. A. & Wieschaus, E. armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila . J. Cell Biol. 134, 149– 163 (1996).

    CAS  PubMed  Google Scholar 

  42. Petronczki, M. & Knoblich, J. A. DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila . Nature Cell Biol. 3, 43– 49 (2001).

    CAS  PubMed  Google Scholar 

  43. Wodarz, A., Ramrath, A., Grimm, A. & Knust, E. Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J. Cell Biol. 150, 1361–1374 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fuerstenberg, S., Peng, C. Y., Alvarez-Ortiz, P., Hor, T. & Doe, C. Q. Identification of Miranda protein domains regulating asymmetric cortical localization, cargo binding, and cortical release. Mol. Cell. Neurosci. 12, 325– 339 (1998).

    CAS  PubMed  Google Scholar 

  45. Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biol. 2, 531–539 (2000). [PubMed]

    CAS  PubMed  Google Scholar 

  46. Johansson, A., Driessens, M. & Aspenstrom, P. The mammalian homologue of the Caenorhabditis elegans polarity protein PAR-6 is a binding partner for the Rho GTPases Cdc42 and Rac1. J. Cell Sci. 113, 3267– 3275 (2000).

    CAS  PubMed  Google Scholar 

  47. Lin, D. et al. A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biol. 2, 540–547 (2000). [PubMed]

    CAS  PubMed  Google Scholar 

  48. Qiu, R. G., Abo, A. & Martin, G. S. A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCζ signaling and cell transformationM . Curr. Biol. 10, 697–707 (2000).

    CAS  PubMed  Google Scholar 

  49. Brazil, D. B. & Hemmings, B. A. Cell polarity: Scaffold proteins par excellence. Curr. Biol. 10, R592– R594 (2000).

    CAS  PubMed  Google Scholar 

  50. Izumi, Y. et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol. 143, 95–106 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Jantsch-Plunger, V. et al. CYK-4. A rho family GTPase activating protein (GAP) required for central spindle formation and cytokinesis. J. Cell Biol. 149, 1391–1404 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Goldstein, B. Cell contacts orient some cell division axes in the Caenorhabditis elegans embryo. J. Cell Biol. 129, 1071– 1080 (1995).

    CAS  PubMed  Google Scholar 

  53. Thorpe, C. J., Schlesinger, A., Carter, J. C. & Bowerman, B. Wnt signaling polarizes an early C. elegans blastomere to distinguish endoderm from mesoderm. Cell 90, 695– 705 (1997).

    CAS  PubMed  Google Scholar 

  54. Schlesinger, A., Shelton, C. A., Maloof, J. N., Meneghini, M. & Bowerman, B. Wnt pathway components orient a mitotic spindle in the early Caenorhabditis elegans embryo without requiring gene transcription in the responding cell. Genes Dev. 13, 2028–2038 ( 1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gho, M. & Schweisguth, F. Frizzled signalling controls orientation of asymmetric sense organ precursor cell divisions in Drosophila . Nature 393, 178–181 (1998). This report describes a connection between asymmetric cell division and planar polarity and shows the function of Frizzled in establishing this connection.

    CAS  PubMed  Google Scholar 

  56. Roegiers, F., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. The sensory organ precursor cell lineage in Drosophila contains two types of asymmetric divisions. Nature Cell Biol. 3, 58–67 (2001).

    CAS  PubMed  Google Scholar 

  57. Bray, S. Planar polarity: out of joint? Curr. Biol. 10, R155–R158 (2000).

    CAS  PubMed  Google Scholar 

  58. Shulman, J. M., Perrimon, N. & Axelrod, J. D. Frizzled signaling and the developmental control of cell polarity. Trends Genet. 14, 452– 458 (1998).

    CAS  PubMed  Google Scholar 

  59. Vinson, C. R., Conover, S. & Adler, P. N. A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature 338, 263–264 ( 1989).

    CAS  PubMed  Google Scholar 

  60. Strutt, D. I., Weber, U. & Mlodzik, M. The role of RhoA in tissue polarity and Frizzled signalling . Nature 387, 292–295 (1997).

    CAS  PubMed  Google Scholar 

  61. Rulifson, E. J., Wu, C. H. & Nusse, R. Pathway specificity by the bifunctional receptor frizzled is determined by affinity for wingless. Mol. Cell 6 , 117–126 (2000).

    CAS  PubMed  Google Scholar 

  62. Lu, B., Usui, T., Uemura, T., Jan, L. & Jan, Y. N. Flamingo controls the planar polarity of sensory bristles and asymmetric division of sensory organ precursors in Drosophila. Curr. Biol. 9, 1247–1250 (1999).

    CAS  PubMed  Google Scholar 

  63. Bellaiche, Y., Gho, M., Kaltschmidt, J. A., Brand, A. H. & Schweisguth, F. Frizzled regulates the localisation of cell-fate determinants and mitotic spindle rotation during asymmetric cell division. Nature Cell Biol. 3, 50– 57 (2001).

    CAS  PubMed  Google Scholar 

  64. Gotta, M. & Ahringer, J. Distinct roles for Gα and Gβγ in regulating spindle position and orientation in early C. elegans embryos. Nature Cell Biol. (in the press).

  65. Zwaal, R. R. et al. G proteins are required for spatial orientation of early cell cleavages in C. elegans embryos. Cell 86, 619–629 (1996).

    CAS  PubMed  Google Scholar 

  66. Sheldahl, L. C., Park, M., Malbon, C. C. & Moon, R. T. Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr. Biol. 9, 695– 698 (1999).

    CAS  PubMed  Google Scholar 

  67. Schaefer, M., Shevchenko, A. & Knoblich, J. A. A protein complex containing inscuteable and the Gα-binding protein Pins orients asymmetric cell divisions in Drosophila . Curr. Biol. 10, 353– 362 (2000).

    CAS  PubMed  Google Scholar 

  68. Yu, F., Morin, X., Cai, Y., Yang, X. & Chia, W. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell 100, 399–409 ( 2000).

    CAS  PubMed  Google Scholar 

  69. Parmentier, M. L. et al. Rapsynoid/Partner of Inscuteable controls asymmetric division of larval neuroblasts in Drosophila. J. Neurosci. (Online) 20, RC84 (2000).

  70. Siderovski, D. P., Diverse-Pierluissi, M. & De Vries, L. The GoLoco motif: a Gαi/o binding motif and potential guanine-nucleotide exchange factor. Trends Biochem. Sci. 24, 340–341 (1999).

    CAS  PubMed  Google Scholar 

  71. Takesono, A. et al. Receptor-independent activators of heterotrimeric G-protein signaling pathways. J. Biol. Chem. 274, 33202–33205 (1999).

    CAS  PubMed  Google Scholar 

  72. Parent, C. A., Blacklock, B. J., Froehlich, W. M., Murphy, D. B. & Devreotes, P. N. G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95, 81–91 (1998).

    CAS  PubMed  Google Scholar 

  73. Chant, J. Cell polarity in yeast. Annu. Rev. Cell. Dev. Biol. 15, 365–391 (1999).

    CAS  PubMed  Google Scholar 

  74. Nern, A. & Arkowitz, R. A. A Cdc24p–Far1p–Gβγ protein complex required for yeast orientation during mating. J. Cell Biol. 144, 1187–1202 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mello, C. C. et al. The PIE-1 protein and germline specification in C. elegans embryos. Nature 382, 710– 712 (1996).

    CAS  PubMed  Google Scholar 

  76. Seydoux, G. et al. Repression of gene expression in the embryonic germ lineage of C. elegans. Nature 382, 713– 716 (1996).

    CAS  PubMed  Google Scholar 

  77. Reese, K. J., Dunn, M. A., Waddle, J. A. & Seydoux, G. Asymmetric segregation of PIE-1 in C. elegans is mediated by two complementary mechanisms that act through separate PIE-1 protein domains. Mol. Cell 6, 445–455 ( 2000).

    CAS  PubMed  Google Scholar 

  78. Lu, B., Ackerman, L., Jan, L. Y. & Jan, Y. N. Modes of protein movement that lead to the asymmetric localization of partner of Numb during Drosophila neuroblast division. Mol. Cell 4, 883–891 (1999).

    CAS  PubMed  Google Scholar 

  79. Peng, C.-Y., Manning, L., Albertson, R. & Doe, C. Q. The tumour suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Nature 408, 596–600 (2000).

    CAS  PubMed  Google Scholar 

  80. Ohshiro, T., Yagami, T., Zhang, C. & Matsuzaki, F. Role of cortical tumour suppressor proteins in asymmetric division of Drosophila neuroblast . Nature 408, 593–596 (2000). References 79 and 80 describe the first genes that are required for basal, but not apical, protein localization in Drosophila neuroblasts, suggesting that they are components of the transport machinery.

    CAS  PubMed  Google Scholar 

  81. Woods, D. F., Hough, C., Peel, D., Callaini, G. & Bryant, P. J. Dlg protein is required for junction structure, cell polarity, and proliferation control in Drosophila epithelia. J. Cell Biol. 134, 1469–1482 (1996).

    CAS  PubMed  Google Scholar 

  82. Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289, 113–116 (2000).

    CAS  PubMed  Google Scholar 

  83. Strand, D., Raska, I. & Mechler, B. M. The Drosophila lethal(2)giant larvae tumor suppressor protein is a component of the cytoskeleton. J. Cell Biol. 127, 1345–1360 ( 1994).

    CAS  PubMed  Google Scholar 

  84. Woods, D. F. & Bryant, P. J. The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell 66, 451– 464 (1991).

    CAS  PubMed  Google Scholar 

  85. Strand, D. et al. The Drosophila lethal(2)giant larvae tumor suppressor protein forms homo-oligomers and is associated with nonmuscle myosin II heavy chain. J. Cell Biol. 127, 1361– 1373 (1994).

    CAS  PubMed  Google Scholar 

  86. De Lorenzo, C., Mechler, B. M. & Bryant, P. J. What is Drosophila telling us about cancer? Cancer Metastasis Rev. 18, 295– 311 (1999).

    CAS  PubMed  Google Scholar 

  87. Kagami, M., Toh-e, A. & Matsui, Y. Sro7p, a Saccharomyces cerevisiae counterpart of the tumor suppressor l(2)gl protein, is related to myosins in function. Genetics 149, 1717–1727 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Qian, X., Goderie, S. K., Shen, Q., Stern, J. H. & Temple, S. Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development 125, 3143–3152 (1998).

    CAS  PubMed  Google Scholar 

  89. Chenn, A. & McConnell, S. K. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis . Cell 82, 631–641 (1995).

    CAS  PubMed  Google Scholar 

  90. Zhong, W., Feder, J. N., Jiang, M. M., Jan, L. Y. & Jan, Y. N. Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron 17, 43–53 (1996).

    CAS  PubMed  Google Scholar 

  91. Wakamatsu, Y., Maynard, T. M., Jones, S. U. & Weston, J. A. NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron 23, 71–81 ( 1999).

    CAS  PubMed  Google Scholar 

  92. Zhong, W. et al. Mouse numb is an essential gene involved in cortical neurogenesis . Proc. Natl Acad. Sci. USA 97, 6844– 6849 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Johansson, C. B. et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25– 34 (1999).

    CAS  PubMed  Google Scholar 

  94. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    CAS  PubMed  Google Scholar 

  95. Hyman, A. A. Centrosome movement in the early divisions of Caenorhabditis elegans: a cortical site determining centrosome position. J. Cell Biol. 109, 1185–1193 ( 1989). Laser ablation of microtubules reveals a mechanism for orientation of mitotic spindles: astral microtubules attach to a cortical site and pull the spindle towards the site.

    CAS  PubMed  Google Scholar 

  96. Shulman, J. M., Benton, R. & St Johnston, D. The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell 101, 377– 388 (2000).

    CAS  PubMed  Google Scholar 

  97. Bohm, H., Brinkmann, V., Drab, M., Henske, A. & Kurzchalia, T. V. Mammalian homologues of C. elegans PAR-1 are asymmetrically localized in epithelial cells and may influence their polarity . Curr. Biol. 7, 603–606 (1997).

    CAS  PubMed  Google Scholar 

  98. Levitan, D. J., Boyd, L., Mello, C. C., Kemphues, K. J. & Stinchcomb, D. T. par-2, a gene required for blastomere asymmetry in Caenorhabditis elegans, encodes zinc-finger and ATP-binding motifs . Proc. Natl Acad. Sci. USA 91, 6108– 6112 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Burglin, T. R. A Caenorhabditis elegans prospero homologue defines a novel domain . Trends Biochem. Sci. 19, 70– 71 (1994).

    CAS  PubMed  Google Scholar 

  100. Oliver, G. et al. Prox 1, a prospero-related homeobox gene expressed during mouse development. Mech. Dev. 44, 3– 16 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank all members of my laboratory, in particular M. Petronczki and M. Schaefer, for their contributions to the ideas presented here; M. Glotzer for valuable discussions that had considerable influence on this review; and J. -M. Peters and M. Glotzer for comments on the manuscript. Work in my laboratory is funded by Boehringer Ingelheim.

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASE LINKS

PAR-3

PAR-6

PKC-3

PAR-2

PAR-1

Frizzled

Bazooka

Inscuteable

Prospero

Staufen

Miranda

Numb

PON

Cdc42

PINS

GoLoco domain

Pleckstrin homology domain

DLG

LGL

wingless

FURTHER INFORMATION

The interactive fly

Knoblich lab homepage

Cytoplasmic determinants chapter of Scott Gilbert's developmental biology page

ENCYCLOPEDIA OF LIFE SCIENCES

G proteins

Glossary

ZYGOTE

Embryo at the one-cell stage between fertilization and the first cell division.

NEUROBLAST

Primary Drosophila neural precursor that gives rise to neural cells only. Divides asymmetrically in a stem-cell-like mode into another neuroblast and a ganglion mother cell.

SEVEN-TRANSMEMBRANE RECEPTOR

A class of receptors that contains seven membrane-spanning helices and usually transmits signals to the inside of a cell by activating heterotrimeric G proteins.

HETEROTRIMERIC G PROTEIN

A protein complex of three proteins (Gα, Gβ and Gγ). Whereas Gβ and Gγ form a tight complex, Gα is part of the complex in its inactive, GDP-bound, form but dissociates in its active, GTP-bound, form. Both Gα and Gβγ can transmit downstream signals after activation.

PDZ DOMAIN

Protein interaction domain that often occurs in scaffolding proteins and is named after the founding members of this protein family (Psd-95, discs-large and ZO-1).

RING FINGER

Protein domain consisting of two loops held together at their base by cysteine and histidine residues that complex two zinc ions. Many ring fingers function in protein degradation by facilitating protein ubiquitination.

GANGLION MOTHER CELL

(GMC) Small daughter cell of a neuroblast. Divides only once more to produce two neurons.

COILED-COIL DOMAINS

A protein domain that forms a bundle of two or three α-helices. Whereas short coiled-coil domains are involved in protein interactions, long coiled-coil domains forming long rods occur in structural or motor proteins.

SOP CELL

Sensory organ precursor cell that gives rise to all cells in a Drosophila sensory organ.

ORTHOLOGUE

The functional equivalent of a protein in another species.

TIGHT JUNCTIONS

Connections between individual cells in an epithelium that form a diffusion barrier between the two surfaces of an epithelium.

FRIZZLED

A protein family of seven-transmembrane receptors. Its founding member, frizzled, was identified as a so-called tissue polarity mutation in Drosophila that causes defects in the orientation of bristles and hairs. Frizzled proteins function as receptors for wingless and its vertebrate homologues, the Wnt proteins.

IMAGINAL DISCS

Epithelial sacs in Drosophila larvae that give rise to the tissues that later form the adult fly.

EPENDYMAL CELLS

A layer of cells that line the large fluid-filled cavities in the brain, the ventricles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knoblich, J. Asymmetric cell division during animal development . Nat Rev Mol Cell Biol 2, 11–20 (2001). https://doi.org/10.1038/35048085

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35048085

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing