Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Separate but linked functions of conventional myosins modulate adhesion and neurite outgrowth

Abstract

The potential functional diversity of closely related myosin isoforms found in eukaryotic cells is not yet understood in detail. We have previously provided evidence from functional knockouts of Neuro-2A neuroblastoma cells that myosin IIB is essential for neurite outgrowth1. Here we investigate the role of non-muscle myosin IIA in the same cell line. We show that suppression of myosin IIA transcript and protein expression, brought about through exposure to isoform-specific antisense oligonucleotides, caused a rearrangement of the actin cytoskeleton and loss of cell adhesion. This also led to disruption of focal contacts, as evidenced by coincident reduction in paxillin and vinculin immunofluorescence, but did not diminish transcript expression. All effects were fully reversible. Before myosin IIA antisense-induced detachment, neurite outgrowth remained unaffected. By contrast, antisense oligonucleotides directed against myosin IIB transcripts had no effect on adhesion but severely attenuated neurite outgrowth. We infer that the two main isoforms of neuronal conventional myosin, myosins IIA and IIB, have separate but linked functions during neuronal adhesion and neurite outgrowth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effect of antisense or control oligonucleotides, derived from myosin IIA or IIB sequences, on the phenotype of cultured mouse Neuro-2A neuroblastoma cells.
Figure 2: Demonstration by RT–PCR that the expression of myosin IIA transcripts in cultured mouse Neuro-2A neuroblastoma cells is attenuated specifically through application of antisense oligonucleotides derived from myosin IIA sequence.
Figure 3: The effect of antisense or control oligonucleotides, derived from myosin IIA or IIB sequences, on Neuro-2A neuroblastoma cell adhesion and focal contact formation.

Similar content being viewed by others

References

  1. Wylie, S. R., Wu, P-J., Patel, H. & Chantler, P. D. Proc. Natl Acad. Sci. USA 95, 12967–12972 (1998).

    Article  CAS  Google Scholar 

  2. Letourneau, P. C., Kater, S. B. & Macagno, E. R. (eds) The Nerve Growth Cone (Raven Press, New York, 1991).

    Google Scholar 

  3. Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenburger, D. A. & Horwitz, A. F. Nature 385, 537–540 (1997); see also Erratum, Nature 388, 210 (1997).

    Article  CAS  Google Scholar 

  4. Hall, A. Science 279, 509–514 (1998).

    Article  CAS  Google Scholar 

  5. Burridge, K. & Chrzanowska-Wodnicka, M. Annu. Rev. Cell Dev. Biol. 12, 463–519 (1996).

    Article  CAS  Google Scholar 

  6. de Curtis, I. & Malanchini, B. Exp. Cell Res. 230, 233–243 (1997).

    Article  CAS  Google Scholar 

  7. Gomez, T. M., Roche, F. K. & Letourneau, P. C. J. Neurobiol. 29, 18–34 (1996).

    Article  CAS  Google Scholar 

  8. Nagy, J. I., Hacking, J., Frankenstein, U. N. & Turley, E. A. J. Neurosci. 15, 241–252 (1995).

    Article  CAS  Google Scholar 

  9. Lewis, A. K. & Bridgman, P. C. J. Cell Biol. 119, 1219–1243 (1992).

    Article  CAS  Google Scholar 

  10. Lewis, A. K. & Bridgman, P. C. Cell Motil. Cytoskel. 33, 130–150 (1996).

    Article  CAS  Google Scholar 

  11. Miller, M., Bower, E., Levitt, P., Li, D. & Chantler, P. D. Neuron 8, 25–44 (1992).

    Article  CAS  Google Scholar 

  12. Rochlin, W., Itoh, K., Adelstein, R. S. & Bridgman, P. C. J. Cell Sci. 108, 3661–3670 (1995).

    CAS  PubMed  Google Scholar 

  13. Lin, C. H., Espreafico, E. M., Mooseker, M. S. & Forscher, P. Neuron 16, 769–782 (1996).

    Article  CAS  Google Scholar 

  14. Wang, F-S., Wolenski, J. S., Cheney, R. E., Mooseker, M. S. & Jay, D. J. Science 273, 660–663 (1996).

    Article  CAS  Google Scholar 

  15. Honer, B., Citi, S., Kendrick-Jones, J. & Jockusch, B. M. J. Cell Biol. 107, 2181–2189 (1988).

    Article  CAS  Google Scholar 

  16. Sims, J. R., Karp, S. & Ingber, D. E. J. Cell Sci. 103, 1215–1222 (1992).

    PubMed  Google Scholar 

  17. Chrzanowska-Wodnicka, M. & Burridge, K. J. Cell Biol. 133, 1403–1415 (1996).

    Article  CAS  Google Scholar 

  18. Kolega, J. J. Cell Sci. 111, 2085–2095 (1998).

    CAS  PubMed  Google Scholar 

  19. Maupin, P., Phillips, C. L., Adelstein, R. S. & Pollard, T. D. J. Cell Sci. 107, 3077–3090 (1994).

    CAS  PubMed  Google Scholar 

  20. Jalink, K. et al. J. Cell Biol. 126, 801–810 (1994).

    Article  CAS  Google Scholar 

  21. Hirose, M. et al. J. Cell Biol. 141, 1625–1636 (1998).

    Article  CAS  Google Scholar 

  22. Amano, M. K. et al. Genes Cells 3, 177–188 (1998).

    Article  CAS  Google Scholar 

  23. Bray, D. Dev. Biol. 102, 379–389 (1984).

    Article  CAS  Google Scholar 

  24. Lamoureux, P., Buxbaum, R. E. & Heidemann, S. R. Nature 340, 159–162 (1989).

    Article  CAS  Google Scholar 

  25. Smilenov, L. B., Mikhailov, A., Pelham, R. J. Jr, Marcantonio, E. E. & Gundersen, G. G. Science 286, 1172–1174 (1999).

    Article  CAS  Google Scholar 

  26. van Leeuwen, F. N., van Delft, S., Kain, H. E., van der Kammen, R. A. & Collard, J. G. Nature Cell Biol. 1, 242–248 (1999).

    Article  CAS  Google Scholar 

  27. Cramer, L. P. & Mitchison, T. J. J. Cell Biol. 131, 179–189 (1995).

    Article  CAS  Google Scholar 

  28. de Lanerolle, P., Gogas, G., Li, X. & Schluns, K. J. Biol. Chem. 268, 16883–16886 (1993).

    CAS  PubMed  Google Scholar 

  29. Mazaki, Y., Uchida, H., Hino, O., Hashimoto, S. & Sabe, H. J. Biol. Chem. 273, 22435–22441 (1998).

    Article  CAS  Google Scholar 

  30. Alatortsev, V. E., Kramerova, I. A., Frolov, M. V., Lavrov, S. A. & Westphal, E. D. FEBS Lett. 413, 197–201 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Fletcher for assistance and P. de Lanerolle for supplying the anti-myosin IIA antibody. We thank G. Dunn and W. Gratzer for their comments on the manuscript. This work was supported by grants from the Wellcome Trust and the BBSRC to P.D.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Chantler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wylie, S., Chantler, P. Separate but linked functions of conventional myosins modulate adhesion and neurite outgrowth. Nat Cell Biol 3, 88–92 (2001). https://doi.org/10.1038/35050613

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35050613

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing