Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How drosophila appendages develop

Key Points

  • Drosophila appendages (legs, antennae, mouthparts, analia, wings and halteres) arise from imaginal discs in specific segments.

  • The critical event that permits embryonic cells to develop into the appendage primordia is expression of a homeobox gene called Distal-less ( Dll).

  • All imaginal discs subdivide into anterior and posterior compartments. The wing also subdivides into dorsal and ventral compartments in later stages in development.

  • Cells at compartment borders produce morphogens — secreted signalling molecules such as hedgehog (Hh), wingless (Wg) and decapentaplegic (Dpp) — that pattern appendages by forming gradients.

  • Cells respond to these morphogens by activating different patterns of gene expression, depending on the level of morphogen.

  • Trunk cells become separated from appendage cells by mutual antagonism between Hh/Wg/Dpp at the centre of the disc, and the homeobox genes homothorax (hth) and extradenticle ( exd), at the periphery.

  • The response to the gradient of Wg and Dpp signals generates distinct genetic domains along the proximodistal axis of the appendage: high Wg and Dpp levels in the centre of the disc (which becomes the distal appendage) activate Dll, whereas moderate levels in the intermediate zone (which becomes the more proximal appendage) activate dachshund (dac).

  • Appendage identity is specified by a combination of homeobox gene expression, which specifies the segment, and Dpp or Wg response genes, which specify dorsal or ventral properties.

  • The mechanisms used in Drosophila to segregate the cells fated to form appendages and the genes involved are conserved in vertebrates.

Abstract

Just a glance at the body of the fruitfly Drosophila reveals that it has a main body part — the trunk — and a number of specialized appendages such as legs, wings, halteres and antennae. How do Drosophila appendages develop, what gives each appendage its unique identity, and what can the fruitfly teach us about appendage development in vertebrates?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaginal discs and the structures that develop from them.
Figure 2: Generation of cell affinity differences between anterior and posterior compartment cells in the wing disc.
Figure 3: Gene activity in the leg and wing imaginal disc primordia in a late embryo (stage 14).
Figure 4: Subdivision of the mature leg disc and the adult leg into distinct genetic subdomains.
Figure 5: Specification of appendage identity by the combinatorial contributions of Hox genes and Distal-less and vestigial.

Similar content being viewed by others

References

  1. Garcia-Bellido, A., Ripoll, P. & Morata, G. Developmental compartmentalization in the dorsal mesothoracic disc of Drosophila. Dev. Biol. 48, 132–147 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Gorfinkiel, N., Morata, G. & Guerrero, I. The homeobox gene Distal-less induces ventral appendage development in Drosophila. Genes Dev. 11, 2259–2271 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Garcia-Bellido, A., Ripoll, P. & Morata, G. Developmental compartmentalization of the wing disk of Drosophila. Nature New Biol. 245, 251–253 (1973).First demonstration of the existence of compartments in Drosophila.

    Article  CAS  PubMed  Google Scholar 

  4. Steiner, E. Establishment of compartments in the developing imaginal leg discs of Drosophila. Wilhelm Roux Arch. Dev. Biol. 180, 31–46 (1976).

    Article  Google Scholar 

  5. Lawrence, P. A. & Morata, G. The early development of mesothoracic compartments in Drosophila. An analysis of cell lineage and fate mapping and an assessment of methods. Dev. Biol. 56, 40–51 (1977).

    Article  CAS  PubMed  Google Scholar 

  6. Morata, G. & Lawrence, P. A. Control of compartment development by the engrailed gene in Drosophila. Nature 255, 614–617 (1975). Provides evidence for the role of engrailed in maintaining the A/P compartment border in the wing disc.

    Article  CAS  PubMed  Google Scholar 

  7. Garcia-Bellido, A. in Cell Patterning, Ciba Found. Symp. Vol. 29 (ed. S. Brenner) 161–182 (Associated Scientific Publishers, New York, 1975).

    Google Scholar 

  8. Lawrence, P. A. & Struhl, G. Morphogens, compartments, and pattern: lessons from Drosophila? Cell 85 , 951–961 (1996). A lucid review on patterning mechanisms in Drosophila relating the classical ideas of compartments and homeotic genes with the function of the Hh, Wg and Dpp morphogens.

    Article  CAS  PubMed  Google Scholar 

  9. Strigini, M. & Cohen, S. Formation of morphogen gradients in the Drosophila wing. Semin. Cell Dev. Biol. 10, 335–344 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Rodriguez, I. & Basler, K. Control of compartmental affinity boundaries by hedgehog. Nature 389, 614– 618 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Blair, S. S. & Ralston, A. Smoothened-mediated Hedgehog signalling is required for the maintenance of the anterior–posterior lineage restriction in the developing wing of Drosophila. Development 124, 4053–4063 (1997). References 10 and 11 provide evidence that the role of engrailed in keeping anterior and posterior cells separate is mediated by the signalling gene hedgehog.

    CAS  PubMed  Google Scholar 

  12. Dahman, C. & Basler, K. Opposing transcriptional outputs of Hedgehog signaling and engrailed control compartmental cell sorting at the Drosophila A/P boundary. Cell 100, 411–422 (2000).

    Article  Google Scholar 

  13. Diaz-Benjumea, F. J. & Cohen, S. M. Interaction between dorsal and ventral cells in the imaginal disc directs wing development in Drosophila. Cell 75, 741– 752 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Blair, S. S. Mechanisms of compartment formation: evidence that non-proliferating cells do not play a critical role in defining the D/V lineage restriction in the developing wing of Drosophila. Development 119 , 339–351 (1993). References 13 and 14 provide evidence for the role of the gene apterous in establishing the D/V compartment border in the wing disc and in acting as a selector gene.

    CAS  PubMed  Google Scholar 

  15. Panin, V. M., Papayannoupolos, V., Wilson, R. & Irvine, K. D. Fringe modulates Notch-ligand interactions. Nature 387, 908–912 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Fleming, R. J., Gu, Y. & Hukriede, N. A. Serrate-mediated activation of Notch is specifically blocked by the product of the gene fringe in the dorsal compartment of the Drosophila wing imaginal disc. Development 124, 2973–2981 ( 1997).

    CAS  PubMed  Google Scholar 

  17. Williams, J. A., Bell, J. B. & Carroll, S. B. Control of Drosophila wing and haltere development by the nuclear vestigial gene product. Genes Dev. 5 , 2481–2495 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Zecca, M., Basler, K. & Struhl, G. Direct and long range action of a Wingless morphogen gradient. Cell 87, 833– 844 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Neumann, C. & Cohen, S. M. A hierarchy of cross-regulation involving wingless, vestigial and cut organizes the dorsal/ventral axis of the Drosophila wing. Development 122, 3477–3485 (1996).

    CAS  PubMed  Google Scholar 

  20. Rauskolb, C., Correia, T. & Irvine, K. D. Fringe-dependent separation of dorsal and ventral cells in the Drosophila wing. Nature 401, 476–480 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Micchelli, C. A. & Blair, S. S. Dorsoventral lineage restriction in wing imaginal discs requires Notch. Nature 401, 473–476 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  22. Dahmann, C. & Basler, K. Compartment boundaries: at the edge of development. Trends Genet. 15, 320– 326 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Lawrence, P. A. & Morata, G. Homeobox genes: their function in Drosophila segmentation and pattern formation. Cell 78, 181–189 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  24. Moreno, E. & Morata, G. caudal is the Hox gene that specifies the most posterior Drosophila segment. Nature 400, 873–877 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  25. McGinnis, W., Levine, M. S., Hafen, E., Kuroiwa, A. & Gehring, W. J. A conserved DNA sequence in homeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature 308, 428–433 (1984).

    Article  CAS  PubMed  Google Scholar 

  26. Scott, M. P. & Weiner, A. J. Structural relationships among genes that control development: sequence homology between Antennapedia , Ultrabithorax and fushi tarazu loci of Drosophila. Proc. Natl Acad. Sci. USA 81, 4115– 4119 (1984).References 25 and 26 report the discovery of the homeobox, arguing for a common origin of homeotic genes. They also provided a molecular marker of homeotic genes that eventually led to their discovery in other animal species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burglin, T. R. in Biodiversity and Evolution (eds Arai, R., Kato, M. & Doi, Y.) 291–336 (The National Science Museum Foundation, Tokyo, 1995).

    Google Scholar 

  28. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 ( 2000).

    Article  PubMed  Google Scholar 

  29. Duboule, D. (ed.) Guidebook to the Homeobox Genes (Sambrook & Tooze Publications, Oxford Univ. Press, Oxford, 1994).

    Google Scholar 

  30. Rauskolb, C., Peifer, M. & Wieschaus, E. extradenticle, a regulator of homeotic gene activity, is a homolog of the homeobox-containing human proto-oncogene pbx1. Cell 74, 1–20 ( 1993).

    Article  Google Scholar 

  31. Rieckhof, G., Casares, F., Ryoo, H. D., Abu-Shaar, M. & Mann, R. S. Nuclear translocation of Extradenticle requires homothorax, which encodes an Extradenticle-related homeodomain protein . Cell 91, 171–183 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Mann, R. & Abu-Shaar, M. Nuclear import of the homeodomain protein Extradenticle in response to Decapentaplegic and Wingless signalling . Nature 383, 630–633 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Aspland, S. & White, R. A. H. Nucleocytoplasmic localisation of extradenticle protein is spatially regulated throughout development of Drosophila. Development 124, 741– 747 (1997).

    CAS  PubMed  Google Scholar 

  34. Abu-Shaar, M. & Mann, R. S. Generation of multiple antagonistic domains along the proximodistal axis during Drosophila leg development . Development 125, 3821– 3830 (1998).

    CAS  PubMed  Google Scholar 

  35. Cohen, B., Simcox, A. & Cohen, S. M. Allocation of thoracic imaginal primordia in the Drosophila embryo. Development 117, 597–608 (1993).

    CAS  PubMed  Google Scholar 

  36. Cohen, S. M., Bronner, G., Kuttner, F., Jurgens, G. & Jackle, H. Distal-less encodes a homeodomain protein required for limb development in Drosophila. Nature 338 , 432–434 (1989).

    Article  CAS  PubMed  Google Scholar 

  37. Goto, S. & Hayashi, S. Specification of embryonic limb primordium by graded activity of Decapentaplegic. Development 124, 125–132 (1997).

    CAS  PubMed  Google Scholar 

  38. Panganiban, G. et al. The origin and evolution of animal appendages. Proc. Natl Acad. Sci. USA 94, 5162– 5166 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vachon, G., Cohen, B., Pfeifle, C., McGuffin, M. E., Botas, J. & Cohen, S. M. Homeotic genes of the bithorax complex repress limb development in the abdomen of the Drosophila embryo through the target gene Distal-less. Cell 71, 437–450 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  40. Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 ( 1978).

    Article  CAS  PubMed  Google Scholar 

  41. Whiteley, M., Noguchi, P. D., Sensabaugh, S. M., Odenwald, W. F. & Kassis, J. A. The Drosophila gene escargot encodes a zinc finger motif found in snail-related genes. Mech. Dev. 36, 117– 127 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Cohen, S. M. & Jurgens, G. Proximal-distal pattern formation in Drosophila: cell autonomous requirement for Distal-less gene activity in limb development. EMBO J. 8, 2045–2055 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fuse, N., Hirose, S. & Hayashi, S. Determination of wing cell fate by the escargot and snail genes in Drosophila. Development 122, 1059–1067 (1996).

    CAS  PubMed  Google Scholar 

  44. Boulay, J. L., Dennefeld, C. & Alberga, A. The Drosophila developmental gene snail encodes a protein with nucleic acid binding fingers. Nature 330, 395–398 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. Casares, F. & Mann, R. S. A dual role for homothorax in inhibiting wing blade development and specifying proximal wing identities in Drosophila. Development 127, 1499 –1508 (2000).

    CAS  PubMed  Google Scholar 

  46. Azpiazu, N. & Morata, G. Function and regulation of homothorax in the wing imaginal disc of Drosophila. Development 127, 2685–2693 ( 2000).

    CAS  PubMed  Google Scholar 

  47. Tabata, T. & Kornberg, T. Hedgehog is a signalling protein with a key role in patterning Drosophila imaginal discs. Cell 76, 89–102 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  48. Basler, K. & Struhl, G. Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368, 208–214 (1994). A classic study demonstrating the patterning role of the Hh/Wg/Dpp pathway in appendage development.

    Article  CAS  PubMed  Google Scholar 

  49. Campbell, G., Weaver, T. & Tomlinson, A. Axis specification in the developing Drosophila appendage: the role of wingless, decapentaplegic, and the homeobox gene aristaless. Cell 74, 1113– 1123 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Diaz-Benjumea, F. J., Cohen, B. & Cohen, S. M. Cell interactions between compartments establish the proximal-distal axis of Drosophila legs. Nature 372, 175–179 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Gonzalez-Crespo, S. & Morata, G. Genetic evidence for the subdivision of the arthropod limb into coxopodite and telopodite. Development 122, 3921–3930 (1996).

    CAS  PubMed  Google Scholar 

  52. Mardon, G., Solomon, N. M. & Rubin, G. M. dachshund encodes a nuclear protein required for normal eye and leg development in Drosophila. Development 120, 3473–3486 ( 1994).

    CAS  PubMed  Google Scholar 

  53. Lecuit, T. & Cohen, S. M. Proximal-distal axis formation in the Drosophila leg. Nature 388, 139–145 (1997).Wg and Dpp activate different target genes depending on the local concentration of both morphogens along the proximodistal axis.

    Article  CAS  PubMed  Google Scholar 

  54. Gonzalez-Crespo, S., Torres, M., Martinez-A, C., Mann, R. S. & Morata, G. Antagonism between extradenticle function and Hedgehog signalling in the developing limb. Nature 394, 196–200 ( 1998).Provides evidence both in Drosophila and the mouse limb that the formation of the appendage requires the suppression of extradenticle function. Suppression is achieved by preventing the nuclear transport of the Exd protein.

    Article  CAS  PubMed  Google Scholar 

  55. Wu, J. & Cohen, S. M. Proximodistal axis formation in the Drosophila leg: subdivision into proximal and distal domains by Homothorax and Distal-less. Development 126, 109–117 (1999).

    CAS  PubMed  Google Scholar 

  56. Ng, M., Diaz-Benjumea, F., Vincent, J. P., Wu, J. & Cohen, S. M. Specification of the wing by localised expression of wingless protein. Nature 381, 316–318 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Mullor, J. L., Calleja, M., Capdevila, J. & Guerrero, I. Hedgehog activity, independent of Decapentaplegic, participates in wing disc patterning. Development 124, 1227– 1237 (1997).

    CAS  PubMed  Google Scholar 

  58. Strigini, M. & Cohen, S. M. A Hedhehog activity gradient contributes to AP axial patterning of the Drosophila wing. Development 124, 4697–4705 ( 1997).

    CAS  PubMed  Google Scholar 

  59. Cohen, B., McGuffin, M. E., Pfeifle, C., Segal, D. & Cohen, S. M. apterous, a gene required for imaginal disc development in Drosophila encodes a member of the LIM family of developmental regulatory proteins. Genes Dev. 6, 715–729 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Scheitz, K., Spielman, S. & Noll, M. Molecular genetics of aristaless, a prd-type homeobox involved in the morphogenesis of proximal and distal pattern elements in a subset of appendages in Drosophila. Genes Dev. 7, 114–129 (1993).

    Article  Google Scholar 

  61. Campbell, G., Weaver, T. & Tomlinson, A. Axis specification in the developing Drosophila appendage: the role of wingless, decapentaplegic, and the homeobox gene aristaless. Cell 74, 1113– 1123 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Campbell, G. & Tomlinson, A. The roles of the homeobox genes aristaless and Distal-less in patterning the legs and wings of Drosophila. Development 125, 4483 –4493 (1998).

    CAS  PubMed  Google Scholar 

  63. Kojima, T., Sato, M. & Saigo, K. Formation and specification of distal leg segments in Drosophila by dual Bar homeobox genes, BarH1 and BarH2. Development 127, 769–778 (2000).

    CAS  PubMed  Google Scholar 

  64. Godt, D., Couderc, J. L., Cramton, S. E. & Laski, F. A. Pattern formation of limbs of Drosophila: bric a brac in both a gradient and a wave-like pattern and is required for specification and proper segmentation of the tarsus. Development 119, 799–812 (1993).

    CAS  PubMed  Google Scholar 

  65. Duncan, D. M., Burgess, E. A. & Duncan, I. Control of distal antennal identity and tarsal development in Drosophila by spineless-aristapedia, a homolog of the mammalian dioxin receptor. Genes Dev. 12, 1290– 1303 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. de Celis, J. F., Tyler, D. M., de Celis, J. & Bray, S. J. Notch signalling mediates segmentation of the Drosophila leg. Development 125, 4617–4626 (1998).

    CAS  PubMed  Google Scholar 

  67. Grimm, S. & Pflugfelder, G. O. Control of the gene optomotor-blind in Drosophila wing development by decapentaplegic and wingless. Science 271, 1601– 1604 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Brook, W. J. & Cohen, S. M. Antagonistic interactions between Wingless and Decapentaplegic responsible for dorsal-ventral patterning in the Drosophila leg. Science 273, 1373–1377 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Jiang, J. & Struhl, G. Complementary and mutually exclusive activities of Decapentaplegic and Wingless organise axial patterning during Drosophila leg development. Cell 86, 401–409 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Penton, A. & Hoffmann, F. M. Decapentaplegic restricts the domain of wingless during Drosophila limb patterning. Nature 382, 162–165 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  71. Nellen, D., Bruke, R., Struhl, G. & Basler, K. Direct and long-range action of a DPP morphogen gradient. Cell 85, 357–368 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Lecuit, T. et al. Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 381, 387–393 (1996).References 71 and 72 provide direct evidence that Dpp acts at a distance from its origin and in a dose-dependent manner.

    Article  CAS  PubMed  Google Scholar 

  73. Jazwinska, A., Kirov, N., Wieschaus, E., Roth, S. & Rushlow, C. The Drosophila gene brinker reveals a novel mechanism of Dpp target activation. Cell 96, 563– 573 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Struhl, G. Genes controlling segmental specification in the Drosophila thorax . Proc. Natl Acad. Sci. USA 79, 7380– 7384 (1982).A classic paper showing that Hox genes act as a combinatorial code.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Casares, F. & Mann, R. S. Control of antennal versus leg development in Drosophila. Nature 392, 723– 726 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Cohen, S. M. in The Development of Drosophila melanogaster Vol. 2 (eds Bate, M. & Martinez-Arias, A.) 747–842 (Cold Spring Harbor Laboratory Press, New York, 1993).

    Google Scholar 

  77. Kim, J. et al. Integration of positional signals and regulation of wing formation and identity by Drosophila vestigial gene. Nature 382, 133–138 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Maves, L. & Schubiger, G. A molecular basis for transdetermination in Drosophila imaginal discs: interactions between wingless and decapentaplegic signaling. Development 125, 115– 124 (1998).

    CAS  PubMed  Google Scholar 

  79. Lewis, E. B. Genes and developmental pathways. Am. Zool. 3, 33–56 (1963).

    Article  Google Scholar 

  80. Lewis, E. B. in The Role of Chromosomes in Development (ed. Locke, M.) 231– 252 (Academic, New York, 1964).

    Book  Google Scholar 

  81. Morata, G. & Garcia-Bellido, A. Developmental analysis of some mutants of the bithorax system of the Drosophila. Wilhelm Roux Arch. Dev. Biol. 179, 125– 143 (1976).

    Article  CAS  Google Scholar 

  82. White, R. A. H. & Akam, M. E. Contrabithorax mutations cause inappropriate expression of Ultrabithorax products in Drosophila. Nature 318, 567– 569 (1985).

    Article  Google Scholar 

  83. Weatherbee, S. D., Halder, G., Kim, J., Hudson, A. & Carroll, S. Ultrabithorax regulates genes at several levels of the wing-patterning hierarchy to shape the development of the Drosophila haltere. Genes Dev. 12, 1474– 1482 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Casares, F., Calleja, M. & Sanchez-Herrero, E. Functional similarity in appendage specification by the Ultrabithorax and abdominal-A Drosophila Hox genes. EMBO J. 15, 3934–3942 ( 1996).A striking result showing that the three BX-C genes Ubx, abd-A and Abd-B can induce haltere development in the wing. It argues for a rethinking of BX-C gene function in the appendages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Brand, A. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 ( 1993).A very useful method to express a cloned gene in specific tissues or body regions.

    CAS  PubMed  Google Scholar 

  86. Sanchez-Herrero, E., Vernos, I., Marco, R. & Morata, G. Genetic organization of Drosophila bithorax complex. Nature 313, 108–113 (1985).

    Article  CAS  PubMed  Google Scholar 

  87. Mercader, N. et al. Conserved regulation of the proximo-distal limb axis development by Meis/Hth. Nature 402, 425– 429 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Capdevila, J., Tsukui, T., Rodriguez-Esteban, C., Zappavigna, V. & Izpizua-Belmonte, J. C. Mol. Cell 4, 839–849 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic Hedgehog gene function. Nature 383, 407–413 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Drosospolou, G. et al. A model for anteroposterior patterning of the vertebrate limb based on the sequential long- and short-range Shh signalling and Bmp signalling . Development 127, 1337– 1348 (2000).

    Google Scholar 

  91. Kamps, M. P., Murre, C., Sun, X. & Baltimore, D. A new homeobox gene contributes to the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 60, 547– 555 (1990).

    Article  CAS  PubMed  Google Scholar 

  92. Nourse, J. et al. Chromosomal translocation t(1;19) results of the synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 60, 535–545 (1990).

    Article  CAS  PubMed  Google Scholar 

  93. Moskow, J., Bulrich, F., Juebner, K., Daar, I. & Buchberg, A. Meis1, a PBX1-related homeobox gene involved in myeloid leukemia in BXH-2 mice. Mol. Cell. Biol. 15, 5434–5443 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85, 841–851 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Jonhson, R. L. et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272, 1668–1672 (1996).

    Article  Google Scholar 

  96. Mann, R. S. & Chan, S. -K. Extra specificity from extradenticle : the partnership between HOX and exd/pbx homeodomain proteins. Trends Genet. 12, 258–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Gonzalez-Crespo, S. & Morata, G. Control of Drosophila adult pattern by extradenticle. Development 121, 2117–2125 ( 1995).

    CAS  PubMed  Google Scholar 

  98. Rauskolb, C., Smith, K., Peifer, M. & Wieschaus, E. extradenticle determines segmental identities throughout development. Development 121, 3663–3671 ( 1995).

    CAS  PubMed  Google Scholar 

  99. Struhl, G. A homeotic mutation transforming leg to antenna in Drosophila. Nature 292, 635–638 ( 1981).

    Article  CAS  PubMed  Google Scholar 

  100. Schneuwly, S., Klemenz, R. & Gehring, W. J. Redesigning the body plan of Drosophila by ectopic expression of the homeotic gene Antennapedia. Nature 325, 816–828 ( 1987).

    Article  CAS  PubMed  Google Scholar 

  101. Morata, G. & Lawrence, P. A. Anterior and posterior compartments in the head of Drosophila. Nature 274, 473–474 (1978).

    Article  CAS  PubMed  Google Scholar 

  102. Dong, P. D., Chu, J. & Panganiban, G. Co-expression of the homeobox genes Distal- less and homothorax determines Drosophila antennal identity . Development 127, 209– 216 (2000).

    CAS  PubMed  Google Scholar 

  103. Chen, E. & Baker, B. S. Compartmental organization of the Drosophila genital imaginal discs. Development 124, 205–218 (1996).

    Google Scholar 

  104. Sanchez, L., Casares, F., Gorkinkiel, N. & Guerrero, I. The genital disc of Drosophila melanogaster II. Role of the genes hedgehog, decapentaplegic and wingless. Dev. Genes Evol. 207, 229–241 (1997).

    Article  CAS  PubMed  Google Scholar 

  105. Lindley, D. & Zimm, G. The Genome of Drosophila melanogaster (Academic, San Diego, California, 1992).

    Google Scholar 

Download references

Acknowledgements

I thank E. Sanchez-Herrero, J. F. de Celis, M. Calleja and D. Duboule for discussions and their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

engrailed

hedgehog

wingless

decapentaplegic

LIM-homeobox

apterous

fringe

Delta

Serrate

Notch

vestigial

Antennapedia Complex

Bithorax Complex

caudal

helix–turn–helix

Distal-less

extradenticle

homothorax

Wnt family

Spitz

escargot

zinc-finger

dachshund

aristaless

Bar

bric a brac

spineless

H15

spalt

brinker

Sex combs reduced

Antp

Ubx

abdominal-A

Abdominal-B

achaete-scute

serum response factor

meis

Pbx1

Snail

FURTHER INFORMATION

Interactive Fly: imaginal discs and tissues

Interactive Fly: the Drosophila leg

Interactive Fly: wing

Homeobox Genes Database

ENCYCLOPEDIA OF LIFE SCIENCES

Vertebrate embryo: limb development

Evolutionary developmental biology: Hox gene evolution

Drosophila embryo: cell signalling and segmental patterning

Glossary

IMAGINAL DISCS

Sac-like structures present in the larvae and composed of cells destined to form the different adult cuticular structures. They are named after the adult part that they make: for example, wing, leg, eye-antennal, genital.

SEGMENT

The insect body is divided along the anteroposterior axis into a number of individual units or segments. This organization is visible in embryos, larvae and adult insects.

LINEAGE

The cellular ancestry of a given structure. Two structures share the same lineage if the progeny of a single cell (a clone) can contribute to both. Otherwise they have different lineages.

CLONAL ANALYSIS

A type of study based on experiments in which individual cells are marked genetically during development. In the final structure the progeny of each of these cells will appear as a group of marked cells — a clone.

HOMEOBOX

A 180-bp sequence present in many developmental genes of animals and plants. It encodes a DNA-binding helix–turn–helix motif, indicating that homeobox-containing gene products function as transcription factors.

SELECTOR GENES

The concept of selector genes is intimately linked to that of compartments — body regions of fixed lineage. Selector genes become activated precisely within compartments, where they 'select' specific developmental routes. Classical examples of selector genes are engrailed, apterous and the BX-C genes.

HALTERE

A small dorsal appendage in the third thoracic segment, thought to be involved in flight control.

LIM DOMAIN

A repeat of about 60 amino acids containing cysteine and histidine residues. It is thought to be involved in protein–protein interactions.

HOMEOTIC MUTATIONS

A class of mutations in which a given organ or a segment develops in the same way as one normally present in another part of the body.

BITHORAX COMPLEX (BX-C) GENES

A group of three adjacent homeotic genes responsible for the identity of part of the thorax and the abdomen of the fly. Together with the antennapedia complex (ANT-C), it forms the Hox gene cluster in Drosophila.

GENETIC DOMAINS

A general term referring to the region of the body where a particular gene is expressed. They are usually visualized using specific antibody, DNA or RNA probes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morata, G. How drosophila appendages develop. Nat Rev Mol Cell Biol 2, 89–97 (2001). https://doi.org/10.1038/35052047

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35052047

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing