Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vertical interactions across ten parallel, stacked representations in the mammalian retina

Abstract

The mammalian visual system analyses the world through a set of separate spatio-temporal channels1,2. The organization of these channels begins in the retina1,3, where the precise laminations of both the axon terminals of bipolar cells and the dendritic arborizations of ganglion cells suggests the presence of a vertical stack of neural strata at the inner plexiform layer (IPL)3,4,5,6,7,8,9,10,11. Conversely, many inhibitory amacrine cell classes are multiply or diffusely stratified12, indicating that they might convey information between strata. On the basis of the diverse stratification and physiological properties of ganglion cells, it was suggested that the IPL contains a parallel set of representations of the visual world3,7 embodied in the strata and conveyed to higher centres by the classes of ganglion cells whose dendrites ramify at that stratum. Here we show that each stratum receives unique and substantively different excitatory and inhibitory neural inputs that are integrated to form at least ten different, parallel space-time spiking outputs. The response properties of these strata are ordered in the time domain. Inhibition through GABAC receptors extracts spatial edges in neural representations and seems to separate the functional properties of the strata. We describe a new form of neuronal interaction that we call ‘vertical inhibition’ that acts not laterally, but between strata.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Space-time pattern measurements.
Figure 2: Spiking patterns in each row (measured from four different members of the same cell class) for five different classes of ganglion cells.
Figure 3: Seven of the ten parallel measured representations correlated with depth within the IPL.
Figure 4: Order in the IPL.
Figure 5: Vertical inhibition in the IPL.

Similar content being viewed by others

References

  1. Rodieck, R. W. The First Steps in Seeing (Sinauer, Sunderland, Massachusetts, 1998).

    Google Scholar 

  2. Albright, T. D., Jessell, T. M., Kandel, E. R. & Posner, M. I. Neural science: a century of progress and the mysteries that remain. Neuron 25, S1–S55 (2000).

    Article  Google Scholar 

  3. Boycott, B. & Wässle, H. Parallel processing in the mammalian retina. The Proctor Lecture. Invest. Ophthalmol. Vis. Sci. 40, 1313–1328 (1999).

    CAS  PubMed  Google Scholar 

  4. Euler, T. & Wässle, H. Immunocytochemical identification of cone bipolar cells in the rat retina. J. Comp. Neurol. 361, 461–478 (1995).

    Article  CAS  Google Scholar 

  5. Euler, T., Schneider, H. & Wässle, H. Glutamate responses of bipolar cells in a slice preparation of the rat retina. J. Neurosci. 16, 2934–2944 (1996).

    Article  CAS  Google Scholar 

  6. Cohen, E. & Sterling, P. Demonstration of cell types among cone bipolar neurons of cat retina. Phil. Trans. R. Soc. Lond. B 330, 305–321 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Maturana, H. R., Lettwin, J. Y., Pitts, W. H. & McCulloch, W. S. Physiology and anatomy of vision in the frog. J. Gen. Physiol. 43, 129–175 (1960).

    Article  Google Scholar 

  8. Cajal, S. R. La rétine des vertebrés. La Cellule 9, 119–257 (1893).

    Google Scholar 

  9. Wu, S. M., Gao, F. & Maple, B. R. Functional architecture of synapses in the inner retina: segregation of visual signals by stratification of bipolar cell axon terminals. J. Neurosci. 20, 4462–4470 (2000).

    Article  CAS  Google Scholar 

  10. Zhang, J., Li, W. & Massey, S. C. Cholinergic input to ganglion cells depends on depth in the IPL. Invest. Ophthalmol. 40, S812 (1999).

    Google Scholar 

  11. Famiglietti, E. V. Jr & Kolb, H. Structural basis for on- and off-center responses in retinal ganglion cells. Science 194, 193–195 (1976).

    Article  ADS  Google Scholar 

  12. MacNeil, M. A. & Masland, R. H. Extreme diversity among amacrine cells: implications for function. Neuron 20, 971–982 (1998).

    Article  CAS  Google Scholar 

  13. Roska, B., Nemeth, E., Orzo, L. & Werblin, F. S. Three levels of lateral inhibition: a space-time study of the retina of the tiger salamander. J. Neurosci. 20, 1941–1951 (2000).

    Article  CAS  Google Scholar 

  14. Wässle, H. & Boycott, B. B. Functional architecture of the mammalian retina. Phys. Rev. 71, 447–480 (1991).

    Google Scholar 

  15. Fisher, S. K. & Boycott, B. B. Synaptic connections made by horizontal cells within the outer plexiform layer of the retina of the cat and the rabbit. Proc. R. Soc. Lond. B 186, 317–331 (1974).

    Article  ADS  CAS  Google Scholar 

  16. Euler, T. & Wässle, H. Different contributions of GABAA and GABAC receptors to rod and cone bipolar cells in a rat retinal slice preparation. J. Neurophys. 79, 1384–1395 (1998).

    Article  CAS  Google Scholar 

  17. Shields, C. R., Tran, M. N., Wong, R. O. & Lukasiewicz, P. D. Distinct ionotropic GABA receptors mediate presynaptic and postsynaptic inhibition in retinal bipolar cells. J. Neurosci. 20, 2673–2682 (2000).

    Article  CAS  Google Scholar 

  18. Feigenspan, A., Wässle, H. & Bormann, J. Pharmacology of GABA receptor Cl- channels in rat retinal bipolar cells. Nature 361, 159–162 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Qian, H. & Dowling, J. E. Novel GABA responses from rod-driven retinal horizontal cells. Nature 361, 162–164 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Enz, R., Brandstätter, J. H., Wässle, H. & Bormann, J. Immunocytochemical localization of the GABAC receptor rho subunit in the mammalian retina. J. Neurosci. 16, 4479–4490 (1996).

    Article  CAS  Google Scholar 

  21. Awatramani, G. B. & Slaughter, M. M. Origin of transient and sustained responses in ganglion cells of the retina. J. Neurosci. 20, 7087–7095 (2000).

    Article  CAS  Google Scholar 

  22. Bloomfield, S. A. & Miller, R. F. A functional organization of ON and OFF pathways in the rabbit retina. J. Neurosci. 6, 1–13 (1986).

    Article  CAS  Google Scholar 

  23. Slaughter, M. M. & Miller, R. F. 2-Amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science 211, 182–185 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Wong, R. O. L. Retinal waves and visual system development. Annu. Rev. Neurosci. 22, 29–47 (1999).

    Article  CAS  Google Scholar 

  25. Diamond, J. S. & Copenhagen, D. R. The relationship between light-evoked synaptic excitation and spiking behavior of salamander retinal ganglion cells. J. Physiol. 487, 711–725 (1995).

    Article  CAS  Google Scholar 

  26. Amthor, F. R., Takahashi, E. S. & Oyster, C. W. Morphologies of rabbit retinal ganglion cells with concentric receptive fields. J. Comp. Neurol. 280, 72–96 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. E. Dowling, M. M. Poo, R. H. Kramer and S. Picaud for their comments on the manuscript, and C. Chen for his assistance with the experiments. This study was supported by the ONR and NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Werblin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roska, B., Werblin, F. Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 410, 583–587 (2001). https://doi.org/10.1038/35069068

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35069068

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing