Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Visual transduction in Drosophila

Abstract

The brain's capacity to analyse and interpret information is limited ultimately by the input it receives. This sets a premium on information capacity of sensory receptors, which can be maximized by optimizing sensitivity, speed and reliability of response. Nowhere is selection pressure for information capacity stronger than in the visual system, where speed and sensitivity can mean the difference between life and death. Phototransduction in flies represents the fastest G-protein-signalling cascade known. Analysis in Drosophila has revealed many of the underlying molecular strategies, leading to the discovery and characterization of signalling molecules of widespread importance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoreceptor responses.
Figure 2: Photoreceptor structure.
Figure 3: The INAD signalling complex.
Figure 4: A model of bump generation in Drosophila.

Similar content being viewed by others

References

  1. Hille, B. G protein-coupled mechanisms and nervous signaling. Neuron 9, 187–195 (1992).

    CAS  PubMed  Google Scholar 

  2. Hecht, S., Shlaer, S. & Pirenne, M. Energy quanta and vision. J. Gen. Physiol. 25, 819–840 (1942).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Yeandle, S. & Spiegler, J. B. Light-evoked and spontaneous discrete waves in the ventral nerve photoreceptor of Limulus. J. Gen. Physiol. 61, 552–571 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Baylor, D. A., Lamb, T. D. & Yau, K.-W. Responses of retinal rods to single photons. J. Physiol. 288, 613–634 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Aho, A. C., Donner, K., Hyden, C., Larsen, L. O. & Reuter, T. Low retinal noise in animals with low body-temperature allows high visual sensitivity. Nature 334, 348–350 (1988).

    ADS  CAS  PubMed  Google Scholar 

  6. Wu, C.-F. & Pak, W. L. Light-induced voltage noise in the photoreceptor of Drosophila melanogaster. J. Gen. Physiol. 71, 249–268 (1978).

    CAS  PubMed  Google Scholar 

  7. Howard, J., Blakeslee, B. & Laughlin, S. B. The intracellular pupil mechanism and the maintenance of photoreceptor signal:noise ratios in the blowfly Lucilia cuprina. Proc. R. Soc. Lond. B 231, 415–435 (1987).

    ADS  CAS  PubMed  Google Scholar 

  8. Juusola, M. & Hardie, R. C. Light Adaptation in Drosophila photoreceptors. I. Response dynamics and signaling efficiency at 25 °C. J. Gen. Physiol. 117, 3–25 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lamb, T. D. Gain and kinetics of activation in the G-protein cascade of phototransduction. Proc. Natl Acad. Sci. USA 93, 566–570 (1996).

    ADS  CAS  PubMed  Google Scholar 

  10. Koutalos, Y. & Yau, K. W. Regulation of sensitivity in vertebrate rod photoreceptors by calcium. Trends Neurosci. 19, 73–81 (1996).

    CAS  PubMed  Google Scholar 

  11. Hochstrate, P. & Hamdorf, H. Microvillar components of light adaptation in blowflies. J. Gen. Physiol. 95, 891–910 (1990).

    CAS  PubMed  Google Scholar 

  12. Henderson, S. R., Reuss, H. & Hardie, R. C. Single photon responses in Drosophila photoreceptors and their regulation by Ca2+. J. Physiol. 524, 179–194 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Vogt, K. & Kirschfeld, K. The chemical identity of the chromophores of fly visual pigment. Naturwissenschaften 71, 211–213 (1984).

    ADS  CAS  Google Scholar 

  14. Hardie, R. C. The photoreceptor array of the dipteran retina. Trends Neurosci. 9, 419–423 (1986).

    Google Scholar 

  15. Bloomquist, B. T. et al. Isolation of putative phospholipase C gene of Drosophila, norpA and its role in phototransduction. Cell 54, 723–733 (1988).

    CAS  PubMed  Google Scholar 

  16. Scott, K., Becker, A., Sun, Y., Hardy, R. & Zuker, C. Gqα protein function in vivo: genetic dissection of its role in photoreceptor cell physiology. Neuron 15, 919–927 (1995).

    CAS  PubMed  Google Scholar 

  17. Niemeyer, B. A., Suzuki, E., Scott, K., Jalink, K. & Zuker, C. S. The Drosophila light-activated conductance is composed of the two channels TRP and TRPL. Cell 85, 651–659 (1996).

    CAS  PubMed  Google Scholar 

  18. Putney, J. W. & McKay, R. R. Capacitative calcium entry channels. BioEssays 21, 38–46 (1999).

    PubMed  Google Scholar 

  19. Nasi, E., del Pilar Gomez, M. & Payne, R. in Handbook of Biological Physics (eds Stavenga, D. G., de Grip, W. J. & Pugh, E. N.) 389–448 (Elsevier, 2000).

    Google Scholar 

  20. Acharya, J. K., Jalink, K., Hardy, R. W., Hartenstein, V. & Zuker, C. S. InsP3 receptor is essential for growth and differentiation but not for vision in Drosophila. Neuron 18, 881–887 (1997).

    CAS  PubMed  Google Scholar 

  21. Raghu, P. et al. Normal phototransduction in Drosophila photoreceptors lacking an InsP3 receptor gene. Mol. Cell. Neurosci. 15, 429–445 (2000).

    CAS  PubMed  Google Scholar 

  22. Smith, D. P. et al. Photoreceptor deactivation and retinal degeneration mediated by a photoreceptor-specific protein-kinase-C. Science 254, 1478–1484 (1991).

    ADS  CAS  PubMed  Google Scholar 

  23. Hardie, R. C. et al. Protein kinase C is required for light adaptation in Drosophila photoreceptors. Nature 363, 634–637 (1993).

    ADS  CAS  PubMed  Google Scholar 

  24. Chyb, S., Raghu, P. & Hardie, R. C. Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature 397, 255–259 (1999).

    ADS  CAS  PubMed  Google Scholar 

  25. Estacion, M., Sinkins, W. G. & Schilling, W. P. Regulation of Drosophila transient receptor potential-like (TrpL) channels by phospholipase C-dependent mechanisms. J. Physiol. 530, 1–19 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Masai, I., Okazaki, A., Hosoya, T. & Hotta, Y. Drosophila retinal degeneration A gene encodes an eye-specific diacylglycerol kinase with cysteine-rich zinc-finger motifs and ankyrin repeats. Proc. Natl Acad. Sci. USA 90, 11157–11161 (1993).

    ADS  CAS  PubMed  Google Scholar 

  27. Raghu, P. et al. Constitutive activity of the light-sensitive channels TRP and TRPL in the Drosophila diacylglycerol kinase mutant, rdgA. Neuron 26, 169–179 (2000).

    CAS  PubMed  Google Scholar 

  28. Huang, C. L., Feng, S. Y. & Hilgemann, D. W. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature 391, 803–806 (1998).

    ADS  CAS  PubMed  Google Scholar 

  29. Chuang, H. H. et al. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411, 957–962 (2001).

    ADS  CAS  Google Scholar 

  30. Hardie, R. C. et al. Calcium influx via TRP channels is required to maintain PIP2 levels in Drosophila photoreceptors. Neuron 30, 149–159 (2001).

    CAS  PubMed  Google Scholar 

  31. Li, C. J. et al. INAF, a protein required for transient receptor potential Ca2+ channel function. Proc. Natl Acad. Sci. USA 96, 13474–13479 (1999).

    ADS  CAS  PubMed  Google Scholar 

  32. Ferreira, P. A. & Pak, W. L. Bovine phospholipase C highly homologous to the norpA protein of Drosophila is expressed specifically in cones. J. Biol. Chem. 269, 3129–3131 (1994).

    CAS  PubMed  Google Scholar 

  33. Womack, K. B. et al. Do phosphatidylinositides modulate vertebrate phototransduction? J. Neurosci. 20, 2792–2799 (2000).

    CAS  PubMed  Google Scholar 

  34. Scott, K. & Zuker, C. Lights out: deactivation of the phototransduction cascade. Trends Biochem. Sci. 22, 350–354 (1997).

    CAS  PubMed  Google Scholar 

  35. Chen, J., Makino, C. L., Peachey, N. S., Baylor, D. A. & Simon, M. I. Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant. Science 267, 374–377 (1995).

    ADS  CAS  PubMed  Google Scholar 

  36. Mendez, A. et al. Rapid and reproducible deactivation of rhodopsin requires multiple phosphorylation sites. Neuron 28, 153–164 (2000).

    CAS  PubMed  Google Scholar 

  37. Vinos, J., Jalink, K., Hardy, R. W., Britt, S. G. & Zuker, C. S. A G protein-coupled receptor phosphatase required for rhodopsin function. Science 277, 687–690 (1997).

    CAS  PubMed  Google Scholar 

  38. Byk, T., BarYaacov, M., Doza, Y. N., Minke, B. & Selinger, Z. Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell. Proc. Natl Acad. Sci. USA 90, 1907–1911 (1993).

    ADS  CAS  PubMed  Google Scholar 

  39. Dolph, P. J. et al. Arrestin function in inactivation of G protein-coupled receptor rhodopsin in vivo. Science 260, 1910–1916 (1993).

    ADS  CAS  PubMed  Google Scholar 

  40. Cook, B. et al. Phospholipase C and termination of G-protein-mediated signalling in vivo. Nature Cell Biol. 2, 296–301 (2000).

    CAS  PubMed  Google Scholar 

  41. He, W., Cowan, C. W. & Wensel, T. G. RGS9, a GTPase accelerator for phototransduction. Neuron 20, 95–102 (1998).

    PubMed  Google Scholar 

  42. Fesenko, E. E., Kolesnikov, S. S. & Lyubarsky, A. L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313, 310–313 (1985).

    ADS  CAS  PubMed  Google Scholar 

  43. Kaupp, U. B. & Koch, K. W. Role of cGMP and Ca2+ in vertebrate photoreceptor excitation and adaptation. Annu. Rev. Physiol. 54, 153–175 (1992).

    CAS  PubMed  Google Scholar 

  44. Hsu, Y. T. & Molday, R. S. Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin. Nature 361, 76–79 (1993).

    ADS  CAS  PubMed  Google Scholar 

  45. Gray, P. & Attwell, D. Kinetics of light-sensitive channels in vertebrate photoreceptors. Proc. R. Soc. Lond. B 223, 379–388 (1985).

    ADS  CAS  PubMed  Google Scholar 

  46. Kaupp, U. B. Family of cyclic nucleotide gated ion channels. Curr. Opin. Neurobiol. 5, 434–442 (1995).

    CAS  PubMed  Google Scholar 

  47. Montell, C. & Rubin, G. M. Molecular characterization of Drosophila trp locus, a putative integral membrane protein required for phototransduction. Neuron 2, 1313–1323 (1989).

    CAS  Google Scholar 

  48. Hardie, R. C. & Minke, B. The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 8, 643–651 (1992).

    CAS  PubMed  Google Scholar 

  49. Reuss, H., Mojet, M. H., Chyb, S. & Hardie, R. C. In vivo analysis of the Drosophila light-sensitive channels, TRP and TRPL. Neuron 19, 1249–1259 (1997).

    CAS  PubMed  Google Scholar 

  50. Phillips, A. M., Bull, A. & Kelly, L. E. Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene. Neuron 8, 631–642 (1992).

    CAS  PubMed  Google Scholar 

  51. Xu, X. Z. S., Chien, F., Butler, A., Salkoff, L. & Montell, C. TRPγ, a Drosophila TRP-related subunit, forms a regulated cation channel with TRPL. Neuron 26, 647–657 (2000).

    CAS  PubMed  Google Scholar 

  52. Harteneck, C., Plant, T. D. & Schultz, G. From worm to man: three subfamilies of TRP channels. Trends Neurosci. 23, 159–166 (2000).

    CAS  Google Scholar 

  53. Clapham, D. E., Runnels, L. W. & Strubing, C. The trp ion channel family. Nature Rev. Neurosci. 2, 387–396 (2001).

    CAS  Google Scholar 

  54. Hardie, R. C. & Minke, B. Phosphoinositide-mediated phototransduction in Drosophila photoreceptors: the role of Ca2+ and trp. Cell Calcium 18, 256–274 (1995).

    CAS  Google Scholar 

  55. Scott, K., Sun, Y. M., Beckingham, K. & Zuker, C. S. Calmodulin regulation of Drosophila light-activated channels and receptor function mediates termination of the light response in vivo. Cell 91, 375–383 (1997).

    CAS  PubMed  Google Scholar 

  56. Hardie, R. C. & Mojet, M. H. Magnesium-dependent block of the light-activated and trp-dependent conductance in Drosophila photoreceptors. J. Neurophysiol. 74, 2590–2599 (1995).

    CAS  PubMed  Google Scholar 

  57. Leskov, I. B. et al. The gain of rod phototransduction: reconciliation of biochemical and electrophysiological measurements. Neuron 27, 525–537 (2000).

    CAS  PubMed  Google Scholar 

  58. Calvert, P. D. et al. Membrane protein diffusion sets the speed of rod phototransduction. Nature 411, 90–94 (2001).

    ADS  CAS  PubMed  Google Scholar 

  59. Neubig, R. Membrane organization in G-protein mechanisms. FASEB J. 8, 939–946 (1994).

    CAS  PubMed  Google Scholar 

  60. Sheng, M. & Sala, C. PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci. 24, 1–29 (2001).

    CAS  PubMed  Google Scholar 

  61. Tsunoda, S. et al. A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 388, 243–249 (1997).

    ADS  CAS  PubMed  Google Scholar 

  62. Montell, C. TRP trapped in fly signaling web. Curr. Opin. Neurobiol. 8, 389–397 (1998).

    CAS  Google Scholar 

  63. Huber, A. et al. The transient receptor potential protein (Trp), a putative store-operated Ca2+ channel essential for phosphoinositide-mediated photoreception, forms a signaling complex with NorpA, InaC and InaD. EMBO J. 15, 7036–7045 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, H. S. & Montell, C. TRP and the PDZ protein, INAD, form the core complex required for retention of the signalplex in Drosophila photoreceptor cells. J. Cell Biol. 150, 1411–1422 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Tsunoda, S., Sun, Y., Suzuki, E. & Zuker, C. Independent anchoring and assembly mechanisms of INAD signaling complexes in Drosophila photoreceptors. J. Neurosci. 21, 150–158 (2001).

    CAS  PubMed  Google Scholar 

  66. Xu, X. Z. S., Choudhury, A., Li, X. L. & Montell, C. Coordination of an array of signaling proteins through homo- and heteromeric interactions between PDZ domains and target proteins. J. Cell Biol. 142, 545–555 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Montell, C. Visual transduction in Drosophila. Annu. Rev. Cell Dev. Biol. 15, 231–268 (1999).

    CAS  PubMed  Google Scholar 

  68. vanHuizen, R. et al. Two distantly positioned PDZ domains mediate multivalent INAD-phospholipase C interactions essential for G protein-coupled signaling. EMBO J. 17, 2285–2297 (1998).

    CAS  Google Scholar 

  69. Huber, A., Sander, P., Bahner, M. & Paulsen, R. The TRP Ca2+ channel assembled in a signaling complex by the PDZ domain protein INAD is phosphorylated through the interaction with protein kinase C (ePKC). FEBS Lett. 425, 317–322 (1998).

    CAS  PubMed  Google Scholar 

  70. Liu, M. Y., Parker, L. L., Wadzinski, B. E. & Shieh, B. H. Reversible phosphorylation of the signal transduction complex in Drosophila photoreceptors. J. Biol. Chem. 275, 12194–12199 (2000).

    CAS  PubMed  Google Scholar 

  71. He, W. et al. Modules in the photoreceptor RGS9-1/Gβ5L GTPase-accelerating protein complex control effector coupling, GTPase acceleration, protein folding, and stability. J. Biol. Chem. 275, 37093–37100 (2000).

    CAS  PubMed  Google Scholar 

  72. Schwarzer, A., Schauf, H. & Bauer, P. J. Binding of the cGMP-gated channel to the Na/Ca-K exchanger in rod photoreceptors. J. Biol. Chem. 275, 13448–13454 (2000).

    CAS  PubMed  Google Scholar 

  73. Korschen, H. G. et al. Interaction of glutamic-acid-rich proteins with the cGMP signalling pathway in rod photoreceptors. Nature 400, 761–766 (1999).

    ADS  CAS  PubMed  Google Scholar 

  74. Lamb, T. D. Gain and kinetics of activation in the G-protein cascade of phototransduction. Proc. Natl Acad. Sci. USA 93, 566–570 (1996).

    ADS  CAS  PubMed  Google Scholar 

  75. Minke, B. & Hardie, R. C. in Handbook of Biological Physics (eds Stavenga, D. G., de Grip, W. J. & Pugh, E. N.) 449–525 (Elsevier, 2000).

    Google Scholar 

  76. Pak, W. L., Ostroy, S. E., Deland, M. C. & Wu, C.-F. Photoreceptor mutant of Drosophila: is protein involved in intermediate steps of phototransduction? Science 194, 956–959 (1976).

    ADS  CAS  Google Scholar 

  77. Scott, K. & Zuker, C. S. Assembly of the Drosophila phototransduction cascade into a signalling complex shapes elementary responses. Nature 395, 805–808 (1998).

    ADS  CAS  PubMed  Google Scholar 

  78. Bahner, M., Sander, P., Paulsen, R. & Huber, A. The visual G protein of fly photoreceptors interacts with the PDZ domain assembled INAD signaling complex via direct binding of activated Gαq to phospholipase Cβ. J. Biol. Chem. 275, 2901–2904 (2000).

    CAS  PubMed  Google Scholar 

  79. Tsunoda, S. & Zuker, C. S. The organization of INAD-signaling complexes by a multivalent PDZ domain protein in Drosophila photoreceptor cells ensures sensitivity and speed of signaling. Cell Calcium 26, 165–171 (1999).

    CAS  PubMed  Google Scholar 

  80. Oberwinkler, J. & Stavenga, D. G. Calcium transients in the rhabdomeres of dark- and light-adapted fly photoreceptor cells. J. Neurosci. 20, 1701–1709 (2000).

    CAS  PubMed  Google Scholar 

  81. Wong, F. Adapting bump model for ventral photoreceptors of Limulus. J. Gen. Physiol. 79, 1089–1114 (1982).

    CAS  PubMed  Google Scholar 

  82. Kirschfeld, K. & Vogt, K. Calcium ions and pigment migration in fly photoreceptors. Naturwissenschaften 67, 516–517 (1980).

    ADS  CAS  Google Scholar 

  83. Stavenga, D. G. Insect retinal pigments: spectral characteristics and physiological functions. Prog. Retinal Eye Res. 15, 231–259 (1996).

    CAS  Google Scholar 

  84. Lamb, T. D. & Pugh En Jr A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J. Physiol. 449, 719–758 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Miklos, G. L. G. & Rubin, G. M. The role of the genome project in determining gene function: insights from model organisms. Cell 86, 521–529 (1996).

    CAS  PubMed  Google Scholar 

  86. Hardie, R. C. Whole-cell recordings of the light-induced current in Drosophila photoreceptors: evidence for feedback by calcium permeating the light sensitive channels. Proc. R. Soc. Lond. B 245, 203–210 (1991).

    ADS  Google Scholar 

  87. Ranganathan, R., Harris, G. L., Stevens, C. F. & Zuker, C. S. A Drosophila mutant defective in extracellular calcium-dependent photoreceptor deactivation and rapid desensitization. Nature 354, 230–232 (1991).

    ADS  CAS  PubMed  Google Scholar 

  88. Whitlock, G. G. & Lamb, T. D. Variability in the time course of single photon responses from toad rods: termination of rhodopsin's activity. Neuron 23, 337–351 (1999).

    CAS  PubMed  Google Scholar 

  89. Shieh, B. H. & Zhu, M. Y. Regulation of the TRP Ca2+ channel by INAD in Drosophila photoreceptors. Neuron 16, 991–998 (1996).

    CAS  PubMed  Google Scholar 

  90. Chevesich, J., Kreuz, A. J. & Montell, C. Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signaling complex. Neuron 18, 95–105 (1997).

    CAS  PubMed  Google Scholar 

  91. Laughlin, S. B., van Steveninck, R. R. D. & Anderson, J. C. The metabolic cost of neural information. Nature Neurosci. 1, 36–41 (1998).

    CAS  PubMed  Google Scholar 

  92. Warr, C. G. & Kelly, L. E. Identification and characterization of two distinct calmodulin-binding sites in the Trpl ion-channel protein of Drosophila melanogaster. Biochem. J. 314, 497–503 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang, Z. et al. Activation of Trp3 by inositol 1,4,5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain. Proc. Natl Acad. Sci. USA 98, 3168–3173 (2001).

    ADS  CAS  PubMed  Google Scholar 

  94. Niemeyer, B. A., Bergs, C., Wissenbach, U., Flockerzi, V. & Trost, C. Competitive regulation of CaT-like-mediated Ca2+ entry by protein kinase C and calmodulin. Proc. Natl Acad. Sci. USA 98, 3600–3605 (2001).

    ADS  CAS  PubMed  Google Scholar 

  95. Fleig, A. et al. Calcium-entry second messenger function for ADP-ribose via gating of the LTRPC2 cation channel. Biophys. J. 80, 2749 (2001).

    Google Scholar 

  96. Runnels, L. W., Yue, L. X. & Capham, D. E. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291, 1043–1047 (2001).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Paulsen, T. D. Lamb and R. Ranganathan for constructive comments on the manuscript. Apologies to colleagues whose work we failed to cite owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger C. Hardie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardie, R., Raghu, P. Visual transduction in Drosophila. Nature 413, 186–193 (2001). https://doi.org/10.1038/35093002

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35093002

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing