Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bcr encodes a GTPase-activating protein for p21rac

Abstract

MORE than thirty small guanine nucleotide-binding proteins related to the ras-encoded oncoprotein, termed Ras or p21ras, are known1. They regulate many fundamental processes in all eukaryotic cells, such as growth, vesicle traffic and cytoskeletal organization. GTPase-activating proteins (GAPs) accelerate the intrinsic rate of GTP hydrolysis of Ras-related proteins, leading to down-regulation of the active GTP-bound form2. For p21ras two GAP proteins are known, rasGAP and the neurofibromatosis (NF1) gene product2–5. There is evidence that rasGAP may also be a target protein for regulation by Ras and be involved in downstream signalling6–8. We have purified a GAP protein for p21rho, which is involved in the regulation of the actin cytoskeleton9. Partial sequencing of rhoGAP reveals significant homology with the product of the bcr(breakpoint cluster region) gene, the translocation breakpoint in Philadelphia chromosome-positive chronic myeloid leukaemias. We show here that the carboxy-terminal domains of the bcr-encoded protein (Bcr) and of a Bcr-related protein, n-chimaerin, are both GAP proteins for the Ras-related GTP-binding protein, p21rac. This result suggests that Bcr could be a target for regulation by Rac and has important new implications for the role of bcr translocations in leukaemia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Hall, A. Science 249, 636–640 (1990).

    Article  ADS  Google Scholar 

  2. Trahey, M. & McCormick, F. Science 238, 542–545 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Martin, G. A. et al. Cell 63, 843–849 (1990).

    Article  CAS  Google Scholar 

  4. Ballester, R. et al. Cell 63, 851–859 (1990).

    Article  CAS  Google Scholar 

  5. Xu, G. et al. Cell 63, 835–841 (1990).

    Article  CAS  Google Scholar 

  6. Calés, C., Hancock, J. F., Marshall, C. J. & Hall, A. Nature 332, 548–551 (1988).

    Article  ADS  Google Scholar 

  7. Adari, H., Lowy, D. R., Wilumsen, B. M., Der, C. J. & McCormick, F. Science 240, 518–521 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Yatani, A. et al. Cell 61, 769–776 (1990).

    Article  CAS  Google Scholar 

  9. Paterson, H. F. et al. J. Cell Biol. 111, 1001–1007 (1990).

    Article  CAS  Google Scholar 

  10. Garrett, M. D., Self, A. J., Van Oers, C. & Hall, A. J. biol. Chem. 264, 10–13 (1989).

    CAS  PubMed  Google Scholar 

  11. Garrett, M. D., Major, G. N., Totty, N. & Hall, A. Biochem. J. (in the press).

  12. Heisterkamp, N., Stam, K., Groffen, J., Klein, A. & Grosveld, G. Nature 315, 758–761 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Hariharan, I. K. & Adams, J. M. EMBO J. 6, 115–119 (1987).

    Article  CAS  Google Scholar 

  14. Lifshitz, B. et al. Oncogene 2, 113–117 (1988).

    CAS  PubMed  Google Scholar 

  15. Hall, C. et al. J. molec. Biol. 211, 11–16 (1990).

    Article  CAS  Google Scholar 

  16. Trahey, M. et al. Molec. cell. Biol. 7, 541–544 (1987).

    Article  CAS  Google Scholar 

  17. Smith, D. B. & Johnson, K. S. Gene 67, 31–40 (1988).

    Article  CAS  Google Scholar 

  18. Didsbury, J., Weber, R. F., Bokoch, G. M., Evans, T. & Snyderman, R. J. biol. Chem. 264, 16378–16382 (1989).

    CAS  PubMed  Google Scholar 

  19. Munemitsu, S. et al. Molec. cell. Biol. 10, 5977–5982 (1990).

    Article  CAS  Google Scholar 

  20. Drivas, G. T. et al. Molec. cell. Biol. 10, 1793–1798 (1990).

    Article  CAS  Google Scholar 

  21. Hall, A. & Self, A. J. J. biol. Chem. 261, 10963–10965 (1986).

    CAS  PubMed  Google Scholar 

  22. Otsu, M. et al. Cell 65, 1–20 (1991).

    Article  Google Scholar 

  23. Amson, R. B., Marcelle, C. & Telerman, A. Oncogene 4, 243–247 (1989).

    CAS  PubMed  Google Scholar 

  24. Li, W., Dreazen, O., Kloetzer, W., Gale, R. P. & Arlinghaus, R. B. Oncogene 4, 127–138 (1989).

    CAS  PubMed  Google Scholar 

  25. Konopka, J. B., Watanabe, S. M. & Witte, O. N. Cell 37, 1035–1041 (1984).

    Article  CAS  Google Scholar 

  26. McWhirter, J. R. & Wang, W. Y. J. Molec. cell. Biol. 11, 1553–1565 (1991).

    Article  CAS  Google Scholar 

  27. Muller, A. J. et al. Molec. cell. Biol. 11, 1785–1792 (1991).

    Article  CAS  Google Scholar 

  28. Kawasaki, H. & Suzuki, K. Analyt. Biochem. 186, 264–268 (1990).

    Article  CAS  Google Scholar 

  29. Gearing, D. P. et al. Biotechnology 7, 1157–1160 (1989).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diekmann, D., Brill, S., Garrett, M. et al. Bcr encodes a GTPase-activating protein for p21rac. Nature 351, 400–402 (1991). https://doi.org/10.1038/351400a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351400a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing