Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons

Abstract

THE dendrites of many types of neurons contain voltage-dependent Na+ and Ca2+ conductances that generate action potentials (see ref. 1 for review). The function of these spikes is not well understood, but the Ca2+ entry stimulated by spikes probably affects Ca2+-dependent processes in dendrites. These include synaptic plasticity2,3, cytotoxicity4 and exocytosis5. Several lines of evidence suggest that dendritic spikes occur within subregions of the den-drites6–8. To study the mechanism that govern the spread of spikes in the dendrites of hippocampal pyramidal cells, we imaged Ca2+ entry with Fura-2 (ref. 9) and Na+ entry with a newly developed Na+-sensitive dye10. Our results indicate that Ca2+ entry into dendrites is triggered by Na+ spikes that actively invade the dendrites. The restricted spatial distribution of Ca2–1 entry seems to depend on the spread of Na+ spikes in the dendrites, rather than on a limited distribution of Ca2+ channels. In addition, we have observed an activity-dependent process that modulates the invasion of spikes into the dendrites and progressively restricts Ca2+ entry to more proximal dendritic regions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Llinas, R. R. Science 242, 1654–1664 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Malenka, R. C., Kauer, J. A., Zucker, R. S. & Nicoll, R. A. Science 242, 81–84 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. & Schottler, F. Nature 305, 719–721 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Choi, D. W. Trends Neurosci. 11, 465–469 (1988).

    Article  CAS  Google Scholar 

  5. Llinas, R. & Greenfield, S. A. Proc. natn. Acad. Sci. U.S.A. 84, 3047–3050 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Miyakawa, H. & Kato, H. Brain Res. 399, 303–309 (1986).

    Article  CAS  Google Scholar 

  7. Turner, R. W., Meyers, D. E. R. & Barker, J. L. J. Neurophysiol. 62, 1375–1387 (1989).

    Article  CAS  Google Scholar 

  8. Ross, W. N., Lasser-Ross, N. & Werman, R. Proc. R. Soc. 240, 173–185 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. J. biol. Chem. 260, 3440–3450 (1985).

    CAS  Google Scholar 

  10. Minta, A. & Tsien, R. Y. J. biol. Chem. 264, 19449–19457 (1989).

    CAS  PubMed  Google Scholar 

  11. Lasser-Ross, N., Miyakawa, H., Lev-Ram, V., Young, S. R. & Ross, W. N. J. neurosci. Meth. 36, 253–261 (1991).

    Article  CAS  Google Scholar 

  12. Regehr, W. G., Connor, J. A. & Tank, D. W. Nature 341, 533–536 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Westenbroek, R. E., Ahlijanian, M. K. & Catterall, W. A. Nature 347, 281–284 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Turner, R. W., Meyers, D. E. R., Richardson, T. L. & Barker, J. L. J. Neurosci. 11, 2270–2280 (1991).

    Article  CAS  Google Scholar 

  15. Sah, P., Hestrin, S. & Nicoll, R. A. Science 246, 815–818 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Lasser-Ross, N. & Ross, W. N. Proc. R. Soc. 247, 35–39 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Andersen, P., Storm, J. & Wheal, H. V. J. Physiol., Lond. 383, 509–526 (1987).

    Article  Google Scholar 

  18. Wong, R. K. S. & Prince, D. A. Science 204, 1228–1231 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Masukawa, L. M. & Prince, D. A. J. Neurosci. 4, 217–227 (1984).

    Article  CAS  Google Scholar 

  20. Johnston, D. & Brown, T. H. J. Neurophysiol. 50, 464–486 (1983).

    Article  CAS  Google Scholar 

  21. Ross, W. N., Jaffe, D., Lasser-Ross, N., Lisman, J. & Johnston, D. Soc. Neurosci. Abstr. 17, 581 (1991).

    Google Scholar 

  22. Lancaster, B. & Adams, P. R. J. Neurophysiol. 55, 1268–1282 (1986).

    Article  CAS  Google Scholar 

  23. Lisman, J. Proc. natn. Acad. Sci. U.S.A. 86, 9574–9578 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Steward, O. J. comp. Neurol. 167, 285–314 (1976).

    Article  CAS  Google Scholar 

  25. Amaral, D. G. & Witter, M. P. Neuroscience 31, 571–591 (1989).

    Article  CAS  Google Scholar 

  26. Jaffe, D. & Johnston, D. J. Neurophysiol. 64, 948–960 (1990).

    Article  CAS  Google Scholar 

  27. Lev-Ram, V., Miyakawa, H., Lasser-Ross, N. & Ross, W. N. Soc. Neurosci. Abstr. 16, 894 (1990).

    Google Scholar 

  28. Blaustein, M. P. Trends Neurosci. 11, 438–443 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaffe, D., Johnston, D., Lasser-Ross, N. et al. The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature 357, 244–246 (1992). https://doi.org/10.1038/357244a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357244a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing