Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A functional barrier to movement of lipids in polarized neurons

Abstract

IN polarized neurons, axons and dendrites perform different functions, which are reflected in their different molecular organization. Studies on the sorting of viral and endogenous glycoproteins in epithelial cells and hippocampal neurons suggest that there may be similarities in the mechanism of sorting in these two cell types1–3. The mechanisms that maintain the distinct composition of the two plasma membrane domains in these two cell types must, however, be different. We have proposed the existence of a functional barrier at the axonal hillock/initial segment which prevents the intermixing of membrane constituents1,2. Here we test this hypothesis by fusing liposomes containing fluorescent phospholipids into the plasma membrane of polarized hippocampal cells in culture. Fusion was induced by lowering the pH and mediated by influenza virus haemagglutinin expressed on the axonal surface of neurons infected with fowl plague virus. Labelling was found exclusively on axons after fusion. Although the fused lipids were mobile on the axonal membrane, no labelling was detected on the cell body and dendritic surfaces. These results suggest that there is a diffusion barrier at the axonal hillock/initial segment which maintains the compositional differences between the axonal and somatodendritic domains.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dotti, C. G. & Simons, K. Cell 62, 63–72 (1990).

    Article  CAS  Google Scholar 

  2. Dotti, C. G., Parton, R. G. & Simons, K. Nature 349, 158–161 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Powell, S., Cunningham, B., Edelman, G. & Rodriguez Boulan, E. Nature 353, 76–77 (1991).

    Article  ADS  CAS  Google Scholar 

  4. van Meer, G., Davoust, J. & Simons, K. Biochemistry 24, 3593–3602 (1985).

    Article  CAS  Google Scholar 

  5. van Meer, G. & Simons, K. EMBO J. 5, 1455–1464 (1986).

    Article  CAS  Google Scholar 

  6. White, J., Matlin, K. & Helenius, A. J. Cell Biol. 89, 674–679 (1981).

    Article  CAS  Google Scholar 

  7. White, J., Helenius, A. & Kartenbeck, J. EMBO J. 1, 217–222 (1982).

    Article  CAS  Google Scholar 

  8. Kobayashi, T. & Pagano, R. Cell 55, 797–805 (1988).

    Article  CAS  Google Scholar 

  9. Pagano, R. E. Meth. Cell Biol. 29, 75–81 (1989).

    Article  CAS  Google Scholar 

  10. Dotti, C., Sullivan, C. & Banker, G. J. Neurosci. 8, 1454–1468 (1988).

    Article  CAS  Google Scholar 

  11. Dotti, C. & Banker, G. Nature 330, 254–256 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Gumbiner, B. Am. J. Physiol. 253, C749–C758 (1987).

    Article  CAS  Google Scholar 

  13. Nelson, W. J. & Hammerton, R. W. J. Cell Biol. 108, 893–902 (1989).

    Article  CAS  Google Scholar 

  14. Nelson, W. J. & Veshnock, C. K. Nature 328, 533–536 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Hunnicutt, G., Kosfiszer, M. & Snell, W. J. Cell Biol. 111, 1605–1616 (1990).

    Article  CAS  Google Scholar 

  16. Cowan, A., Myles, D. & Koppel, D. J. Cell Biol. 104, 917–923 (1987).

    Article  CAS  Google Scholar 

  17. Gilula, N. & Satir, P. J. Cell Biol. 53, 494–509 (1972).

    Article  CAS  Google Scholar 

  18. Weiss, R., Goodenough, D. & Goodenough, U. J. Cell Biol. 72, 133–143 (1977).

    Article  CAS  Google Scholar 

  19. Friend, D. & Fawcett, D. J. Cell Biol. 63, 641–664 (1974).

    Article  CAS  Google Scholar 

  20. Peters, A., Palay, S. & Webster, H. The Fine Structure of the Nervous System (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  21. Angelides, K., Elmer, L., Loftus, D. & Elson, E. J. Cell Biol. 106, 1911–1925 (1988).

    Article  CAS  Google Scholar 

  22. Srinivasan, Y., Elmer, L., Davis, J., Bennett, V. & Angelides, K. Nature 333, 177–180 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Kremer, J., v.d. Esker, M., Pathmamanoharan, C. & Wiersema, P. Biochemistry 16, 3932–3935 (1977).

    Article  CAS  Google Scholar 

  24. Banker, G. & Goslin, K. Culturing Nerve Cells (MIT Press, Cambridge, 1991).

    Google Scholar 

  25. Mclntyre, J. C. & Sleight, R. G. Biochemistry 30, 11819–11827 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, T., Storrie, B., Simons, K. et al. A functional barrier to movement of lipids in polarized neurons. Nature 359, 647–650 (1992). https://doi.org/10.1038/359647a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359647a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing