Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Active propagation of somatic action potentials into neocortical pyramidal cell dendrites

Abstract

THE dendrites of neurons in the mammalian central nervous system have been considered as electrically passive structures which funnel synaptic potentials to the soma and axon initial segment, the site of action potential initiation1,2. More recent studies, however, have shown that the dendrites of many neurons are not passive, but contain active conductances3,4. The role of these dendritic voltage-activated channels in the initiation of action potentials in neurons is largely unknown. To assess this directly, patch-clamp recordings were made from the dendrites of neocortical pyramidal cells in brain slices. Voltage-activated sodium currents were observed in dendritic outside-out patches, while action potentials could be evoked by depolarizing current pulses or by synaptic stimulation during dendritic whole-cell recordings. To determine the site of initiation of these action potentials, simultaneous whole-cell recordings were made from the soma and the apical dendrite or axon of the same cell. These experiments showed that action potentials are initiated first in the axon and then actively propagate back into the dendritic tree.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Eccles, J. C. The Physiology of Synapses (Springer, Berlin, 1964).

    Book  Google Scholar 

  2. Rall, W. in Handbook of Physiology. The Nervous System (ed. Kandel, E. R.) 39–97 (Am. Physiol. Soc., Bethesda, Maryland, 1977).

    Google Scholar 

  3. Llinas, R. R. Science 242, 1654–1664 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Adams, P. R. Curr. Biol. 2, 625–627 (1992).

    Article  CAS  Google Scholar 

  5. Sakmann, B. & Neher, E. in Single-Channel Recording (eds Sakmann, B. & Neher, E.) 37–51 (Plenum, New York, 1983).

    Book  Google Scholar 

  6. Huguenard, J. R., Hamill, O. P. & Prince, D. A. Proc. natn. Acad. Sci. U.S.A. 86, 2473–2477 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Amitai, Y., Friedman, A., Connors, B. W. & Gutnick, M. J. Cerebral Cortex 3, 26–38 (1993).

    Article  CAS  Google Scholar 

  8. Regehr, W., Kehoe, J., Ascher, P. & Armstrong, C. Neuron 11, 145–151 (1993).

    Article  CAS  Google Scholar 

  9. Wong, R. K. S., Prince, D. A. & Basbaum, A. I. Proc. natn. Acad. Sci. U.S.A. 76, 986–990 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Benardo, L. S., Masukawa, L. M. & Prince, D. A. J. Neurosci. 2, 1614–1622 (1982).

    Article  CAS  Google Scholar 

  11. Miyakawa, H. & Kato, H. Brain Res. 399, 303–309 (1986).

    Article  CAS  Google Scholar 

  12. Turner, R. W., Meyers, D. E. R. & Barker, J. L. J. Neurophysiol. 62, 1375–1387 (1989).

    Article  CAS  Google Scholar 

  13. Jaffe, D. B. et al. Nature 357, 244–246 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Purpura, D. P. in The Neurosciences (eds Quarton, G. C., Melnechuk, T. & Schmitt, F. O.) 372–393 (Rockefeller Univ. Press, New York, 1967).

    Google Scholar 

  15. Deschenes, M. Expl Brain Res. 43, 304–308 (1981).

    CAS  Google Scholar 

  16. Pockberger, H. Brain Res. 539, 181–190 (1991).

    Article  CAS  Google Scholar 

  17. Spencer, W. A. & Kandel, E. R. J. Neurophysiol. 24, 272–285 (1961).

    Article  CAS  Google Scholar 

  18. Anderson, P. & Lomo, T. Expl Brain Res. 2, 247–260 (1966).

    CAS  Google Scholar 

  19. Anderson, P., Storm, J. & Wheal, H. V. J. Physiol., Lond. 383, 509–526 (1987).

    Article  CAS  Google Scholar 

  20. Herreras, O. J. Neurophysiol. 64, 1429–1441 (1990).

    Article  CAS  Google Scholar 

  21. Turner, R. W., Meyers, D. E. R., Richardson, T. L. & Barker, J. L. J. Neurosci. 11, 2270–2280 (1991).

    Article  CAS  Google Scholar 

  22. Peinado, A., Yuste, R. & Katz, L. C. Neuron 10, 103–114 (1993).

    Article  CAS  Google Scholar 

  23. Moore, J. W., Stockbridge, N. & Westerfield, M. J. Physiol., Lond. 336, 301–311 (1983).

    Article  CAS  Google Scholar 

  24. Strichartz, G. R. J. gen. Physiol. 62, 37–57 (1973).

    Article  CAS  Google Scholar 

  25. Artola, A., Bröcher, S. & Singer, W. Nature 347, 69–72 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Grover, L. M. & Teyler, T. J. Nature 347, 477–479 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Jaffe, D. & Johnston, D. J. Neurophysiol. 64, 948–960 (1990).

    Article  CAS  Google Scholar 

  28. Komatsu, Y. & Iwakiri, M. J. Neurophysiol. 67, 401–410 (1992).

    Article  CAS  Google Scholar 

  29. Dodt, H.-U. & Zieglgänsberger, W. Brain Res. 537, 333–336 (1990).

    Article  CAS  Google Scholar 

  30. Stuart, G. J., Dodt, H.-U. & Sakmann, B. Pflügers Arch. ges. Physiol. 423, 511–518 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stuart, G., Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994). https://doi.org/10.1038/367069a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367069a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing