Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Changing subunit composition of heteromeric NMDA receptors during development of rat cortex

Abstract

ACTIVATION of the N-methyl-d-aspartate (NMDA) receptor is important for certain forms of activity-dependent synaptic plasticity, such as long-term potentiation (reviewed in ref. 1), and the patterning of connections during development of the visual system (reviewed in refs 2, 3). Several subunits of the NMDA receptor have been cloned: these are NMDAR1 (NR1), and NMDAR2A, 2B, 2C and 2D (NR2A-D)4–8. Based on heterologous co-expression studies, it is inferred that NR1 encodes an essential subunit of NMDA receptors and that functional diversity of NMDA receptors in vivo is effected by differential incorporation of subunits NR2A–NR2D5–8. Little is known, however, about the actual subunit composition or heterogeneity of NMDA receptors in the brain. By co-immunoprecipitation with subunit-specific antibodies, we present here direct evidence that NMDA receptors exist in rat neocortex as heteromeric complexes of considerable heterogeneity, some containing both NR2A and NR2B subunits. A progressive alteration in subunit composition seen postnatally could contribute to NMDA-receptor variation and changing synaptic plasticity during cortical development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bliss, r. V. P. & Collingridge, G. L. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Constantine-Paton, M., Cline, H. T. & Debski, E. A. Rev. Neurosci. 13, 129–154 (1990).

    Article  CAS  Google Scholar 

  3. Schatz, C. J. Neuron 5, 745–756 (1990).

    Article  Google Scholar 

  4. Moriyoshi, K. et al. Nature 354, 31–37 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Monyer, H. et al. Science 256, 1217–1221 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Meguro, H. et al. Nature 357, 70–74 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Kutsuwada, T. et al. Nature 358, 36–41 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Ishii, T. et al. J. biol. Chem. 268, 2836–2843 (1993).

    CAS  Google Scholar 

  9. Hollmann, M. et al. Neuron 10, 943–954 (1993).

    Article  CAS  Google Scholar 

  10. Sugihara, H. et al. Biochem. biophys. Res. Commun. 185, 826–832 (1992).

    Article  CAS  Google Scholar 

  11. Tingley, W. G., Roche, K. W., Thompson, A. K. & Huganir, R. L. Nature 364, 70–73 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Chazot, P. L., Cik, M. & Stephenson, F. A. J. Neurochem. 59, 1176–1178 (1992).

    Article  CAS  Google Scholar 

  13. Stern, P., Behe, P., Schoepfer, R. & Colquhoun, D. Proc. R. Soc. Lond. B250, 271–277 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Carmignoto, G. & Vicini, S. Science 258, 1007–1011 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Hestrin, S. Nature 357, 686–689 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Ben-Ari, Y. et al. Neurosci. Lett. 94, 88–92 (1988).

    Article  CAS  Google Scholar 

  17. Kato, N., Artoloa, A. & Singer, W. Devl. Brain Res. 60, 43–50 (1991).

    Article  CAS  Google Scholar 

  18. Kleckner, N. W. & Dingledine, R. Molec. Brain Res. 11, 151–159 (1991).

    CAS  PubMed  Google Scholar 

  19. Tsumoto, T., Hagihara, K., Sato, H. & Hata, Y. Nature 327, 513–514 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Watanabe, M. et al. Neuroreport 3, 1138–1140 (1992).

    Article  CAS  Google Scholar 

  21. Williams, K., Russell, S. L., Shen, Y. M. & Molinoff, P. B. Neuron 10, 267–278 (1993).

    Article  CAS  Google Scholar 

  22. Kato, N. & Yoshimura, H. Proc. natn. Acad. Sci. U.S.A. 90, 7114–7118 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Nakanishi, N., Axel, R. & Schneider, R. Proc. natn. Acad. Sci. U.S.A. 89, 8552–8556 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Durand, G. M. et al. Proc. natn. Acad. Sci. U.S.A. 89, 9359–9363 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Anantharam, V. et al. FEBS Lett. 305, 27–30 (1992).

    Article  CAS  Google Scholar 

  26. Sheng, M., Tsaur, M-L., Jan, Y. N. & Jan, L. Y. Neuron 9, 271–284 (1992).

    Article  CAS  Google Scholar 

  27. Sheng, M., Liao, Y. J., Jan, Y. N. & Jan, L. Y. Nature 365, 72–75 (1993).

    Article  ADS  CAS  Google Scholar 

  28. Tsaur, M-L., et al. Neuron 8, 1055–1067 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, M., Cummings, J., Roldan, L. et al. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368, 144–147 (1994). https://doi.org/10.1038/368144a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368144a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing