Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reverse occlusion leads to a precise restoration of orientation preference maps in visual cortex

An Erratum to this article was published on 10 November 1994

Abstract

IN the visual system of young kittens, the layout of the cortical maps for ocular dominance and orientation preference converges to an equilibrium state within the first few weeks of life and normally remains largely unchanged. If during the critical period, however, patterned visual experience is restricted to only one eye for a few days, cortical neurons lose their ability to respond to stimulation of the deprived eye. We used the 'reverse occlusion' protocol together with chronical optical imaging to investigate how the profound anatomical changes accompanying monocular deprivation1 affect the spatial pattern of the cortical orientation preference map. We report here that after 1 week of monocular deprivation, cortical orientation maps for the deprived eye had vanished. But we also discovered that after subsequent reverse occlusion the restored orientation maps were very similar to the original maps. This demonstrates that in spite of functional disconnection of one eye after monocular deprivation, the layout of cortical orientation maps, when re-established for this eye, is not formed from scratch but is strongly influenced by previous experience.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Antonini, A. & Stryker, M. P. Science 260, 1819–1821 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Hubel, D. H. & Wiesel, T. N. J. Physiol. 206, 419–436 (1970).

    Article  CAS  Google Scholar 

  3. Blakemore, C. & Van Sluyters, R. C. J. Physiol. 237, 195–216 (1974).

    Article  CAS  Google Scholar 

  4. Movshon, J. A. J. Physiol. 261, 125–174 (1976).

    Article  CAS  Google Scholar 

  5. Van Sluyters, R. C. J. Physiol. 284, 1–17 (1978).

    Article  CAS  Google Scholar 

  6. Grinvald, A., Lieke, E. E., Frostig, R. D., Gilbert, C. D. & Wiesel, T. N. Nature 324, 361–364 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Frostig, R. D., Lieke, E. E., Ts'o, D. Y. & Grinvald, A. Proc. natn. Acad. Sci. U.S.A. 87, 6082–6086 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Ts'o, D. Y., Frostig, R. D., Lieke, E. E. & Grinvald, A. Science 249, 417–420 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Bonhoeffer, T. & Grinvald, A. Nature 353, 429–431 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Mioche, L. & Singer, W. J. Neurophysiol. 62, 185–197 (1989).

    Article  CAS  Google Scholar 

  11. Blakemore, C. & Hawken, M. J. J. Physiol. 327, 463–487 (1982).

    Article  CAS  Google Scholar 

  12. Swindale, N. V., Matsubara, J. A. & Cynader, M. S. J. Neurosci. 7, 1414–1427 (1987).

    Article  CAS  Google Scholar 

  13. Blasdel, G. G. J. Neurosci. 12, 3139–3161 (1992).

    Article  CAS  Google Scholar 

  14. Bonhoeffer, T. & Grinvald, A. J. Neurosci. 13, 4157–4180 (1993).

    Article  CAS  Google Scholar 

  15. Kossut, M. & Singer, W. Expl Brain Res. 85, 519–527 (1991).

    Article  CAS  Google Scholar 

  16. Hubel, D. H. & Wiesel, T. N. J. Physiol. 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  17. Chapman, B., Zahs, K. R. & Stryker, M. P. J. Neurosci. 11, 1347–1358 (1991).

    Article  CAS  Google Scholar 

  18. Shatz, C. J. & Stryker, M. P. J. Physiol. 281, 267–283 (1978).

    Article  CAS  Google Scholar 

  19. Fitzpatrick, D., Zhang, Y., Schofield, B. R. & Muly, E. C. Soc. Neurosci. Abstr. 19, 179.2 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DS., Bonhoeffer, T. Reverse occlusion leads to a precise restoration of orientation preference maps in visual cortex. Nature 370, 370–372 (1994). https://doi.org/10.1038/370370a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370370a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing