Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain

Abstract

NICOTINE affects many aspects of behaviour including learning and memory1,2 through its interaction with neuronal nicotinic acetylcholine receptors (nAChR). Functional nAChRs are pentameric proteins containing at least one type of a-subunit and one type of p-subunit3–5. The involvement of a particular neuronal nicotinic subunit in pharmacology and behaviour was examined using gene targeting to mutate β2, the most widely expressed nAChR subunit in the central nervous system6–8. We report here that high-affinity binding sites for nicotine are absent from the brains of mice homozygous for the β2-subunit mutation. Further, electrophysiological recording from brain slices reveals that thalamic neurons from these mice do not respond to nicotine application. Finally, behav- ioural tests demonstrate that nicotine no longer augments the performance of β2-/-mice on passive avoidance, a test of associative memory. Paradoxically, mutant mice are able to perform better than their non-mutant siblings on this task.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Flicker, C., Dean, R. L., Watkins, D. L., Fisher, S. K. & Bartus, R. T. Pharmac. Biochem. Behav. 18, 973–981 (1983).

    Article  CAS  Google Scholar 

  2. Levin, E. D. Psycbopharmacology 108, 417–431 (1992).

    Article  CAS  Google Scholar 

  3. Sargent, P. B. A. Rev. Neurosci. 16, 403–443 (1993).

    Article  CAS  Google Scholar 

  4. Galzi, J.-L., Revah, F., Bessis, A. & Changeux, J.-P. A. Rev. Pharm. 31, 37–72 (1991).

    Article  CAS  Google Scholar 

  5. Anand, R., Conroy, W. G., Schoepfer, R., Whiting, P. & Lindstrom, J. J. biol. Chem. 266, 11192–11198 (1991).

    CAS  PubMed  Google Scholar 

  6. Wada, E. et al. J. comp. Neurol. 284, 314–335 (1989).

    Article  CAS  Google Scholar 

  7. Hill, J. A. J., Zoli, M., Bourgeois, J.-P. & Changeux, J.-P. J. Neurosci. 13, 1551–1568 (1993).

    Article  CAS  Google Scholar 

  8. Zoli, M., Le Novère, N., Hill, J. A. J. & Changeux, J.-P. J. Neurosci. (in the press).

  9. Swanson, L. W. et al. Proc. natn. Acad Sci. U.S.A. 80, 4532–4536 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Flores, C. M., Rogers, S. W., Pabreza, L. A., Wolfe, B. B. & Kellar, K. J. Molec. Pharm. 41, 31–37 (1992).

    CAS  Google Scholar 

  11. Luetje, C. W. & Patrick, J. J. Neurosci. 11, 837–845 (1991).

    Article  CAS  Google Scholar 

  12. Romano, C. & Goldstein, A. Science 210, 647–650 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Marks, M. J. & Collins, A. C. Molec. Pharm. 22, 554–564 (1982).

    CAS  PubMed  Google Scholar 

  14. Marks, M. J. et al. J. Neurosci. 12, 2765–2784 (1982).

    Article  Google Scholar 

  15. Decker, M. W. et al. J. pharmacol. exp. Ther. 270, 319–328 (1994).

    CAS  PubMed  Google Scholar 

  16. Morris, R. G. M. J. Neurosci. 9, 3040–3057 (1989).

    Article  CAS  Google Scholar 

  17. Silva, A. J., Paylor, R., Wehner, J. M. & Tonegawa, S. Science 257, 206–211 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Faiman, C. P., de Erausquin, G. A. & Baratti, C. M. Behavl Neural Biol. 56, 183–199 (1991).

    Article  CAS  Google Scholar 

  19. Nordberg, A. & Bergh, C. Acta Pharm. Toxicol. 56, 337–341 (1985).

    Article  CAS  Google Scholar 

  20. Merio Pich, E. & Samanin, R. Pharm. Res. 21, 595–602 (1989).

    Article  Google Scholar 

  21. Crawley, J. N. Neurosci. biobehav. Rev. 9, 37–44 (1985).

    Article  CAS  Google Scholar 

  22. Oliverio, A. J. pharmacol. exp. Ther. 154, 350–356 (1966).

    CAS  PubMed  Google Scholar 

  23. Le Mouellic, H., Lallemand, Y. & Brulet, P. Cell 69, 251–264 (1992).

    Article  CAS  Google Scholar 

  24. Yagi, T. et al. Proc. natn. Acad. Sci. U.S.A. 87, 9918–9922 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Magin, T. M., McWhir, J. & Melton, D. W. Nucleic Acids Res. 20, 3795–3796 (1992).

    Article  CAS  Google Scholar 

  26. Selfridge, J., Pow, A. M., McWhir, J., Magin, T. M. & Melton, D. W. Somat. Cell molec. Genet. 18, 325–336 (1992).

    Article  CAS  Google Scholar 

  27. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning; A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  28. Clarke, P., Shwartz, R. D., Paul, S. M., Pert, C. B. & Pert, A. J. Neurosci. 5, 1307–1313 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picciotto, M., Zoli, M., Léna, C. et al. Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374, 65–67 (1995). https://doi.org/10.1038/374065a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374065a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing