Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience

Abstract

LONG-TERM potentiation (LTP) is a lasting enhancement of excitatory synaptic transmission that follows specific patterns of electrical stimulation1. Although the mechanism of LTP has been intensively studied, particularly in the hippocampus, its significance for normal brain function remains unproven. It has been proposed that LTP-like mechanisms may contribute to naturally occurring, experience-dependent synaptic modifications in the visual cortex2-8. The formation of normal binocular connections within the visual cortex requires simultaneous input from both eyes during a postnatal critical period9-12 that can be delayed by rearing animals in complete darkness13,14. To explore the role of LTP in this experience-dependent maturation process, we induced LTP in visual cortical slices taken at different ages from light-reared and dark-reared rats. Susceptibility to LTP coincides with the critical period and, like the critical period, can be prolonged by rearing animals in darkness. These findings support the hypothesis that LTP reflects a normal mechanism of experience-dependent synaptic modification in the developing mammalian brain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bliss, T. V. P. & Collingridge, G. L. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Komatsu, Y., Toyama, K., Maeda, J. & Sakaguchi, H. Neurosci. Lett. 26, 269–274 (1981).

    Article  CAS  Google Scholar 

  3. Artola, A. & Singer, W. Nature 330, 649–652 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Berry, R. L., Teyler, T. J. & Taizhen, H. Brain Res. 481, 221–227 (1989).

    Article  CAS  Google Scholar 

  5. Kimura, F., Nishigori, A., Shirokawa, T. & Tsumoto, T. J. Physiol., Lond. 414, 125–144 (1989).

    Article  CAS  Google Scholar 

  6. Bear, M. F., Press, W. A. & Connors, B. W. J. Neurophysiol. 67, 1–11 (1992).

    Article  Google Scholar 

  7. Kirkwood, A. & Bear, M. F. J. Neurosci. 14, 1634–1645 (1994).

    Article  CAS  Google Scholar 

  8. Frégnac, Y., Burke, J. P., Smith, D. & Friedlander, M. J. J. Neurophysiol. 71, 1403–1421 (1994).

    Article  Google Scholar 

  9. Hubel, D. H. & Wiesel, T. N. J. Physiol., Lond. 206, 419–436 (1970).

    Article  CAS  Google Scholar 

  10. Blakemore, C. & vanSluyters, R. C. J. Physiol., Lond. 237, 195–216 (1974).

    Article  CAS  Google Scholar 

  11. Olson, C. R. & Freeman, R. D. Expl Brain Res. 39, 17–21 (1980).

    CAS  Google Scholar 

  12. Fagiolini, M., Pizzorusso, T., Berardi, N., Domenici, L. & Maffei, L. Vision Res. 34, 709–720 (1994).

    Article  CAS  Google Scholar 

  13. Cynader, M. & Mitchel, D. E. J. Neurophysiol. 43, 1026–1039 (1980).

    Article  CAS  Google Scholar 

  14. Mower, G. D. Devl Brain Res. 58, 151–158 (1991).

    Article  CAS  Google Scholar 

  15. Sherman, M. S. & Spear, P. D. Physiol. Rev. 62, 738–855 (1982).

    Article  CAS  Google Scholar 

  16. Domenici, L., Berardi, N., Carmignoto, G., Vantini, G. & Maffei, L. Proc. natn. Acad. Sci. USA. 88, 8811–8815 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Kirkwood, A., Dudek, S. D., Gold, J. T., Aizenman, C. D. & Bear, M. F. Science 260, 1518–1521 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Komatsu, Y., Fujii, K., Maeda, J., Sakaguchi, H. & Toyama, K. J. Neurophysiol. 59, 124–141 (1988).

    Article  CAS  Google Scholar 

  19. Perkins, A. T. & Teyler, T. J. Brain Res. 439, 222–229 (1988).

    Article  Google Scholar 

  20. Kato, N., Artola, A. & Singer, W. Devl Brain Res. 60, 43–50 (1991).

    Article  CAS  Google Scholar 

  21. Stevens, C. F., Tonegawa, S. & Wang, Y. Curr. Biol. 4, 687–693 (1994).

    Article  CAS  Google Scholar 

  22. Fox, K., Daw, N., Sato, H. & Czepita, D. Nature 350, 342–344 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Carmignoto, G. & Vicini, S. Science 258, 1007–1011 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Berry, R. L., Perkins, T. A. & Teyler, T. J. Brain Res. 628, 99–104 (1993).

    Article  CAS  Google Scholar 

  25. Blue, M. E. & Parnavelas, J. G. J. Neurocytol. 12, 697–712 (1983).

    Article  CAS  Google Scholar 

  26. Komatsu, Y. Devl Brain Res. 8, 136–139 (1983).

    Article  Google Scholar 

  27. Bode-Gruel, K. M. & Singer, W. Devl Brain Res. 46, 197–204 (1989).

    Article  Google Scholar 

  28. Luhmann, H. J. & Prince, D. A. Devl Brain Res. 54, 287–290 (1990).

    Article  CAS  Google Scholar 

  29. Friauf, E. & Shatz, C. J. J. Neurophysiol. 66, 2059–2071 (1991).

    Article  CAS  Google Scholar 

  30. Komatsu, Y. J. Neurosci. 14, 6488–6499 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirkwood, A., Lee, HK. & Bear, M. Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience. Nature 375, 328–331 (1995). https://doi.org/10.1038/375328a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375328a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing