Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regeneration of adult axons in white matter tracts of the central nervous system

Abstract

It is widely accepted that the adult mammalian central nervous system (CNS) is unable to regenerate axons1. In addition to physical or molecular barriers presented by glial scarring at the lesion site2,3,4, it has been suggested that the normal myelinated CNS environment contains potent growth inhibitors5,6 or lacks growth-promoting molecules1,7. Here we investigate whether adult CNS white matter can support long-distance regeneration of adult axons in the absence of glial scarring, by using a microtransplantation technique8 that minimizes scarring9 to inject minute volumes of dissociated adult rat dorsal root ganglia directly into adult rat CNS pathways. This atraumatic injection procedure allowed considerable numbers of regenerating adult axons immediate access to the host glial terrain, where we found that they rapidly extended for long distances in white matter, eventually invading grey matter. Abortive regeneration correlated precisely with increased levels of proteoglycans within the extracellular matrix at the transplant interface, whereas successfully regenerating transplants were associated with minimal upregulation of these molecules. Our results demonstrate, to our knowledge for the first time, that reactive glial extracellular matrix at the lesion site is directly associated with failure of axon regrowth in vivo, and that adult myelinated white matter tracts beyond the glial scar can be highly permissive for regeneration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photomicrograph of an unstained 60-µm horizontal section through an adult rat brain indicating microtransplant locations and maximum distances for adult axon regeneration from intracallosal grafts at 2 (2d, arrowhead), 4 (4d, arrowhead) and 6 (*6d) days post-transplantation.
Figure 2: Regenerating adult DRG axons in adult rat corpus callosum.
Figure 3: Transplant integration and association of regenerating axons with host astrocytes.
Figure 4: Regeneration failure associated with a proteoglycan boundary in the absence of a physical glial scar.

References

  1. Ramon y Cajal, S. Degeneration and Regeneration of the Nervous System (Oxford University Press, London, (1928)).

    Google Scholar 

  2. Berry, M. et al. Deposition of scar tissue in the central nervous system. Acta Neurochir. Suppl. Wien 32, 31–53 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Reier, P. J., Stensaas, L. J. & Guth, L. in Spinal Cord Reconstruction(eds Kao, C. C., Bunge, R. P. & Reier, P. J.) 163–195 (Raven, New York, (1983)).

    Google Scholar 

  4. Rudge, J. S. & Silver, J. Inhibition of neurite outgrowth on astrological scars in vitro. J. Neurosci. 10, 3594–3603 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schwab, M. E., Kapfhammer, J. P. & Bandtlow, C. E. Inhibitors of neurite growth. Annu. Rev. Neurosci. 16, 565–595 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Cheng, H., Cao, Y. & Olson, L. Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science 273, 510–513 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Grill, R., Murai, K., Blesch, A., Gage, F. H. & Tuszynski, M. H. Cellular delivery of neurotrohin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J. Neurosci. 17, 5560–5572 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davies, S. J. A., Field, P. M. & Raisman, G. Long fibre growth by axons of embryonic mouse hippocampal neurons microtransplanted into the adult rat fimbria. Eur. J. Neurosci. 5, 95–106 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Davies, S. J. A., Field, P. M. & Raisman, G. Long interfascicular axon growth from embryonic neurons transplanted into adult myelinated tracts. J. Neurosci. 14, 1596–1612 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wictorin, K., Brundin, P., Gustavii, B., Lindvall, O. & Bjorklund, A. Reformation of long axon pathways in adult rat central nervous system by human forebrain neuroblasts. Nature 347, 556–558 (1990).

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Carlstedt, T., Dalsgaard, C. J. & Molander, C. Regrowth of lesioned dorsal root nerve fibers into the spinal cord of neonatal rats. Neurosci. Lett. 74, 14–18 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Gibson, S. J. et al. Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and of eight other species. J. Neurosci. 4, 3101–3111 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bandtlow, C., Zachleder, T. & Schwab, M. E. Oligodendrocytes arrest neurite growth by contact inhibition. J. Neurosci. 10, 3837–3848 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kobayashi, H., Watanabe, E. & Murikami, F. Growth cones of dorsal root ganglion but not retina collapse and avoid oligodendrocytes in culture. Dev. Biol. 168, 383–394 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Brittis, P. A. & Silver, J. Multiple factors govern intraretinal axon guidance: a time-lapse study. Mol. Cell. Neurosci. 6, 413–432 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Rohrer, H. Nonneuronal cells from chick sympathetic and dorsal root sensory ganglia express catecholamine uptake and receptors for nerve growth factor during development. Dev. Biol. 111, 95–107 (1985).

    Article  CAS  Google Scholar 

  17. Krekoski, C. A., Parhad, I. M. & Clark, A. W. Attenuation and recovery of nerve growth factor receptor mRNA in dorsal root ganglion neurons following axotomy. J. Neurosci. Res. 43, 1–11 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Snow, D. M., Lemmon, V., Carrino, D. A., Caplan, A. I. & Silver, J. Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Exp. Neurol. 109, 111–130 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Smith-Thomas, L. et al. An inhibitor of neurite outgrowth produced by astrocytes. J. Cell. Sci. 107, 1687–1695 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Pindzola, R. R., Doller, C. & Silver, J. Putative inhibitory extracellular matrix molecules at the dorsal root entry zone of the spinal cord during development and after root and sciatic nerve lesions. Dev. Biol. 156, 34–48 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. McKeon, R. J., Schreiber, R. C., Rudge, J. S. & Silver, J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 11, 3398–3411 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lander, A. D. Proteoglycans in the nervous system. Curr. Opin. Neurobiol. 3, 716–723 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Steindler, D. A. et al. Boundaries during normal and abnormal brain development: in vivo and in vitro studies of glia and glycoconjugates. Exp. Neurol. 109, 35–56 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Tessier-Lavigne, M. & Goodman, C. S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Giulian, D., Li, J., Li, X., George, J. & Rutecki, P. A. The impact of microglia-derived cytokines upon gliosis in the CNS. Dev. Neurosci. 16, 128–136 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Fitch, M. T. & Silver, J. Activated macrophages and the blood brain barrier: Inflammation after CNS injury leads to increases in putative inhibitory molecules. Exp. Neurol.(in the press).

  27. Davies, S. J. A., Field, P. M. & Raisman, G. Regeneration of cut adult axons fails even in the presence of continuous aligned glial pathways. Exp. Neurol. 142, 203–216 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Ard, M. D., Bunge, M. B., Wood, P. M., Schachner, M. & Bunge, R. P. Retinal neurite growth on astrocytes is not modified by extracellular matrix, anti-L1 antibody, or oligodendrocytes. Glia 4, 70–82 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Fawcett, J. W., Fersht, N., Housden, L., Schachner, M. & Pesheva, P. Axonal growth on astrocytes is not inhibited by oligodendrocytes. J. Cell. Sci. 103, ((1995)).

  30. Vaudano, E. et al. The effects of a lesion or a peripheral nerve graft on GAP-43 upregualtion in the adult rat brain: an in situ hybridization and immunocytochemical study. J. Neurosci. 15, 3594–3611 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Doller and S. E. MacPhedran for technical assistance. This work was supported by the NIH, the MRC, the Daniel Heumann Fund, the International Spinal Research Trust, the British Neurological Research Trust and the Brumagin Memorial Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry Silver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, S., Fitch, M., Memberg, S. et al. Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390, 680–683 (1997). https://doi.org/10.1038/37776

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/37776

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing