Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter

Abstract

Disruption of the mouse dopamine transporter gene results in spontaneous hyperlocomotion despite major adaptive changes, such as decreases in neurotransmitter and receptor levels. In homozygote mice, dopamine persists at least 100 times longer in the extracellular space, explaining the biochemical basis of the hyperdopaminergic phenotype and demonstrating the critical role of the transporter in regulating neurotransmission. The dopamine transporter is an obligatory target of cocaine and amphetamine, as these psychostimulants have no effect on locomotor activity or dopamine release and uptake in mice lacking the transporter.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Iversen, L. L. Br. J. Pharmac. 41, 571–591 (1971).

    Article  CAS  Google Scholar 

  2. Amara, S. G. & Kuhar, M. J. A. Rev. Neurosci. 16, 16–73 (1993).

    Article  Google Scholar 

  3. Giros, B. & Caron, M. G. Trends pharmac. Sci. 14, 43–49 (1993).

    Article  CAS  Google Scholar 

  4. Ritz, M. C., Lamb, R. J., Goldberg, S. R. & Kuhar, M. J. Science 237, 1219–1223 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Horn, A. S. Prog. Neurobiol. 34, 387–400 (1990).

    Article  CAS  Google Scholar 

  6. Pifl, C., Giros, B. & Caron, M. G. J. Neurosci. 13, 4246–4253 (1993).

    Article  CAS  Google Scholar 

  7. Kitayama, S. et al. Proc. natn. Acad. Sci. U.S.A. 89, 7782–7785 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Giros, B. et al. J. biol. Chem. 269, 15985–15988 (1994).

    CAS  PubMed  Google Scholar 

  9. Buck, K. J. & Amara, S. G. Proc. natn. Acad. Sci. U.S.A. 91, 12584–12588 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Barker, E. L., Kimmel, H. L. & Blakely, R. D. Molec. Pharmac. 46, 799–807 (1994).

    CAS  Google Scholar 

  11. Giros, B., El Mestikawy, S., Bertrand, L. & Caron, M. G. FEBS Lett. 295, 149–154 (1991).

    Article  CAS  Google Scholar 

  12. Cerruti, C., Walther, D. M., Kuhar, M. J. & Uhl, G. R. Molec. Brain Res. 18, 181–186 (1993).

    Article  CAS  Google Scholar 

  13. Ciliax, B. J. et al. J. Neurosci. 15, 1714–1723 (1995).

    Article  CAS  Google Scholar 

  14. Zhou, Q.-Y., Quaife, C. J. & Palmiter, R. D. Nature 374, 640–643 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Drago, J. et al. Proc. natn. Acad. Sci. U.S.A. 91, 12564–12568 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Xu, M. et al. Cell 79, 729–742 (1994).

    Article  CAS  Google Scholar 

  17. Balk, J.-H. et al. Nature 377, 424–428 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Fuller, R. W., Wong, D. T. & Robertson, D. W. Med. Res. Rev. 11, 17–34 (1991).

    Article  CAS  Google Scholar 

  19. Wise, R. A. & Bozarth, M. A. Psychiat. Med. 3, 445–460 (1985).

    CAS  Google Scholar 

  20. Fisher, J. F. & Cho, A. K. J. Pharmac. exp. Ther. 208, 203–209 (1979).

    Google Scholar 

  21. Hitri, A., Hurd, Y. L., Wyatt, R. J. & Deutsch, S. I. Clin. Neuropharmac. 17, 1–22 (1994).

    Article  CAS  Google Scholar 

  22. Eshelman, A. Y., Henningsen, R. A., Neve, K. A. & Janowsky, A. J. Molec. Pharmac. 45, 312–316 (1994).

    Google Scholar 

  23. Sulzer, D. et al. J. Neurosci. 15, 4102–4108 (1995).

    Article  CAS  Google Scholar 

  24. Kohler, B. H. & Smithies, O. Proc. natn. Acad. Sci. U.S.A. 86, 8932–8935 (1989).

    Article  ADS  Google Scholar 

  25. Byck, R. & VanDyke, C. NIDA Monogr. 13, 97–118 (1977).

    Google Scholar 

  26. Meister, B. & Elde, R. Neuroendocrinology 58, 388–395 (1993).

    Article  CAS  Google Scholar 

  27. Baumann, M. H. & Rothman, R. B. Brain Res. 608, 175–179 (1993).

    Article  CAS  Google Scholar 

  28. Zimmerberg, B. & Gray, M. S. Physiol. Behav. 52, 379–384 (1992).

    Article  CAS  Google Scholar 

  29. Kelly, P. H., Seviour, P. W. & Iversen, S. D. Brain Res. 94, 507–522 (1975).

    Article  CAS  Google Scholar 

  30. Di Chiara, G. & Imperato, A. Proc. natn. Acad. Sci. U.S.A. 85, 5274–5278 (1988).

    Article  ADS  CAS  Google Scholar 

  31. Jaber, M. et al. Neuroscience 65, 1041–1050 (1995).

    Article  CAS  Google Scholar 

  32. Gerfen, C. R. Trends Neurosci. 15, 133–138 (1992).

    Article  CAS  Google Scholar 

  33. Le Moine, C. et al. Proc. natn. Acad. Sci. U.S.A. 87, 230–234 (1990).

    Article  ADS  CAS  Google Scholar 

  34. Le Moine, C., Normand, E. & Bloch, B. Proc. natn. Acad. Sci. U.S.A. 88, 4205–4209 (1991).

    Article  ADS  CAS  Google Scholar 

  35. Chiodo, L. A. Neurochem. Int. 26, 815–845 (1992).

    Google Scholar 

  36. Kawagoe, K. T., Zimmerman, J. B. & Wightman, R. M. J. Neurosci. Meth. 48, 225–240 (1993).

    Article  CAS  Google Scholar 

  37. Wightman, R. M. & Zimmerman, J. B. Brain Res. Rev. 15, 135–144 (1990).

    Article  CAS  Google Scholar 

  38. Jones, S. R., Garris, P. A., Kilts, C. D. & Wightman, R. M. J. Neurochem. 64, 2581–2589 (1995).

    Article  CAS  Google Scholar 

  39. Raiteri, M., Cerrito, F., Cervoni, A. M. & Levi, G. J. Pharmac. exp. Ther. 208, 195–202 (1979).

    CAS  Google Scholar 

  40. Wall, S. C., Gu, H. & Rudnick, G. Molec. Pharmac. 47, 544–550 (1995).

    CAS  Google Scholar 

  41. Parker, E. M. & Cubeddu, L. X. J. Pharmac. exp. Ther. 237, 179–192 (1986).

    CAS  Google Scholar 

  42. Jacocks, H. M. & Cox, B. M. J. Pharmac. exp. Ther. 262, 356–364 (1992).

    Google Scholar 

  43. Crow, T. J. Br. J. Psychiat. 137, 383–386 (1980).

    CAS  Google Scholar 

  44. Ehringer, H. & Hornykiewicz, O. Klin. Wschr. 38, 1236–1239 (1960).

    Article  CAS  Google Scholar 

  45. Koob, G. F. & Bloom, F. E. Science 242, 715–723 (1988).

    Article  ADS  CAS  Google Scholar 

  46. Graham, J. H., Maher, J. R. & Robinson, S. E. J. Pharmac. exp. Ther. 174, 707–717 (1995).

    Google Scholar 

  47. Tison, F., Normand, E. & Bloch, B. Neurosci. Lett. 166, 48–50 (1994).

    Article  CAS  Google Scholar 

  48. Kennedy, R. T., Jones, S. R. & Wightman, R. M. J. Neurochem. 59, 449–455 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giros, B., Jaber, M., Jones, S. et al. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379, 606–612 (1996). https://doi.org/10.1038/379606a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379606a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing