Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines

Abstract

NEURONS contain distinct compartments including dendrites, dendritic spines, axons and synaptic terminals1. The molecular mechanisms that generate and distinguish these compartments, although largely unknown, may involve the small GTPases Rac and Cdc42 (ref. 2), which appear to regulate actin polymerization3. Having shown that perturbations of Racl activity block the growth of axons but not dendrites of Drosophila neurons2, we investigated whether this also applies to mammals by examining transgenic mice expressing constitutively active human Racl in Purkinje cells. We found that these mice were ataxic and had a reduction of Purkinje-cell axon terminals in the deep cerebellar nuclei, whereas the dendritic trees grew to normal height and branched extensively. Unexpectedly, the dendritic spines of Purkinje cells in developing and mature cerebella were much reduced in size but increased in number. These 'mini' spines often form supernumerary synapses. These differential effects of perturbing Racl activity indicate that there may be distinct mechanisms for the elaboration of axons, dendrites and dendritic spines.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Cajal, S. R. Histology of the Nervous System of Man and Vertebrates (Oxford Univ. Press, 1995).

    Google Scholar 

  2. Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Genes Dev. 8, 1787–1802 (1994).

    Article  CAS  Google Scholar 

  3. Hall, A. A. Rev. Cell Biol. 10, 31–54 (1994).

    Article  CAS  Google Scholar 

  4. Palay, S. L. & Chan-Palay, V. Cerebellar Cortex: Cytology and Organization (Springer, New York, 1974).

    Book  Google Scholar 

  5. Ito, M. The Cerebellum and Neural Control (Raven, New York, 1984).

    Google Scholar 

  6. Oberdick, J. et al. Neuron 10, 1007–1018 (1993).

    Article  CAS  Google Scholar 

  7. Smeyne, R. J. et al. Molec. cell. Neurosci. 6, 230–251 (1995).

    Article  CAS  Google Scholar 

  8. Dunham, N. W. & Miya, T. S. J. Am. Pharmac. Assoc. 46, 208–209 (1957).

    Article  CAS  Google Scholar 

  9. Jande, S. S., Maler, L. & Lawson, D. E. M. Nature 294, 765–767 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Mignery, G. A., Südhof, T. C., Takei, K. & De Camilli, P. Nature 342, 192–195 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Jahn, R., Schiebler, R., Ouimet, C. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 82, 4137–4141 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Sotelo, C. J. Neurocytol. 19, 737–755 (1990).

    Article  CAS  Google Scholar 

  13. Dusart, I. & Sotelo, C. J. comp. Neurol. 347, 211–232 (1994).

    Article  CAS  Google Scholar 

  14. Altman, J. J. comp. Neurol. 145, 399–464 (1972).

    Article  CAS  Google Scholar 

  15. Berry, M. & Bradley, P. Brain Res. 112, 1–35 (1976).

    Article  CAS  Google Scholar 

  16. Harris, K. M. & Stevens, J. K. J. Neurosci. 8, 4455–4469 (1988).

    Article  CAS  Google Scholar 

  17. Vojtek, A. B. & Cooper, J. A. Cell 82, 527–529 (1995).

    Article  CAS  Google Scholar 

  18. Harris, K. W. & Kater, S. B. A. Rev. Neurosci. 17, 341–371 (1994).

    Article  CAS  Google Scholar 

  19. Rakic, P. & Sidman, R. L. J. comp. Neurol. 152, 133–162 (1973).

    Article  CAS  Google Scholar 

  20. Baptista, C. A., Hatten, M. E., Blazeski, R. & Mason, C. A. Neuron 12, 243–260 (1994).

    Article  CAS  Google Scholar 

  21. Didsbury, J., Weber, R. F., Bokoch, G. M., Evans, T. & Snyderman, R. J. biol. Chem. 264, 16378–16382 (1989).

    CAS  PubMed  Google Scholar 

  22. Wood, T. L. et al. DNA 7, 585–593 (1988).

    Article  CAS  Google Scholar 

  23. Moll, J., Sansig, G., Fattori, E. & van der Putten, H. Oncogene 6, 863–866 (1991).

    CAS  PubMed  Google Scholar 

  24. Hogan, B., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory, Cold Spring Harbor, 1986).

    Google Scholar 

  25. Wisden, W. & Morris, B. J. in In Situ Hybridization Protocols for the Brain (eds Widsen, W. & Morris, B. J.) 9–34 (Academic, London, 1994).

    Google Scholar 

  26. Jones, K. R., Farinas, I., Backus, C. & Reichardt, L. F. Cell 76, 989–999 (1994).

    Article  CAS  Google Scholar 

  27. Guenet, J.-L., Sotelo, C. & Mariani, J. J. Hered. 74, 105–108 (1983).

    Article  CAS  Google Scholar 

  28. Roffler-Tarlov, S., Beart, P. M., O'Gorman, S. & Sidman, R. L. Brain Res. 168, 75–95 (1979).

    Article  CAS  Google Scholar 

  29. Ajima, A., Hensch, T., Kado, R. T. & Ito, M. Neurosci. Res. 12, 281–286 (1991).

    Article  CAS  Google Scholar 

  30. Fairen, A. & Smith-Fernandez, A. Micros. Res. Tech. 23, 289–305 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, L., Hensch, T., Ackerman, L. et al. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 379, 837–840 (1996). https://doi.org/10.1038/379837a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379837a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing