Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

ER-to-Golgi transport visualized in living cells

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression and transport of VSVG-GFP in living cells.
Figure 2: Pathway, velocity and fluorescence intensity of single pre-Golgi structure en route to the Golgi complex.
Figure 3: Pathway, velocity and fluorescence intensity of single pre-Golgi structure en route to the Golgi complex.
Figure 4: ER to Golgi transport of VSVG-GFP visualized upon shift from 40 °C to 32 °C or in cells whose Golgi area is photoble.
Figure 5: Role of microtubules and dynein/dynactin in translocation of pre-Golgi structures.

References

  1. Rothman, J. E. & Wieland, F. T. Protein sorting by transport vesicles. Science 272, 227–234 (1996).

    Google Scholar 

  2. Schekman, R. & Orci, L. Coat proteins and vesicle budding. Science 271, 1526–1533 (1996).

    Google Scholar 

  3. Aridor, M., Bannykh, S., Rowe, T. & Balch, W. E. Sequential coupling between CopII and CopI vesicle coats in endoplasmic reticulum to Golgi transport. J. Cell Biol. 131, 1–19 (1995).

    Google Scholar 

  4. Pluttner, H., Davidson, H. W., Saraste, J. & Balch, W. E. Morphological analysis of protein transport from the ER to Golgi membranes in digitonin-permeabilized cells: role of the p58 containing compartment. J. Cell Biol. 119, 1097–1116 (1992).

    Google Scholar 

  5. Saraste, J. & Svensson, K. Distribution of the intermediate elements operating in ER to Golgi transport. J. Cell Sci. 100, 415–430 (1991).

    Google Scholar 

  6. Saraste, J. & Kuismanen, E. Pathways of protein sorting and membrane traffic between the rough endoplasmic reticulum and the Golgi complex. Semin. Cell Biol. 3, 343–355 (1992).

    Google Scholar 

  7. 7. Krijnse-Locker, J., Ericsson, M., Rottier, P. J. & Griffiths, G. Characterization of the budding compartment of mouse hepatitis virus: Evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J. Cell Biol. 124, 55–70 (1994).

    Google Scholar 

  8. Stinchcombe, J. C., Nomoto, H., Cutler, D. F. & Hopkins, C. R. Anterograde and retrograde traffic between the rough endoplasmic reticulum and the Golgi complex. J. Cell Biol. 131, 1387–1401 (1995).

    Google Scholar 

  9. Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G. & Cormier, M. J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233 (1992).

    Google Scholar 

  10. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Google Scholar 

  11. Kreis, T. E. & Lodish, H. F. Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface. Cell 46, 929–937 (1986).

    Google Scholar 

  12. Beckers, C. J., Keller, D. S. & Balch, W. E. Semi-intact cells permeable to macromolecules: Use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex. Cell 50, 523–534 (1987).

    Google Scholar 

  13. Bergmann, J. E. Using temperature-sensitive mutants of VSV to study membrane protein biogenesis. Methods Cell Biol. 32, 85–110 (1989).

    Google Scholar 

  14. Cole, N. B., Sciaky, N., Marotta, A., Song, J. & Lippincott-Schwartz. J. Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol. Biol. Cell 7, 631–650 (1996).

    Article  CAS  Google Scholar 

  15. Schweizer, A., Fransen, J. A. M., Bachi, T., Ginsel, L. & Hauri, H. -P. Identification, by a monoclonal antibody, of a 53 kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. J. Cell Biol. 107, 1643–1653 (1988).

    Google Scholar 

  16. Lippincott-Schwartz, J., Cole, N. B., Marotta, A., Conrad, P. A. & Bloom, G. S. Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic. J. Cell Biol. 128, 293–306 (1995).

    Google Scholar 

  17. Pepperkok, R.et al. βCOP is essential for biosynthetic membrane transport from the endoplasmic reticulum to the Golgi complex in vivo. Cell 74, 71–82 (1993).

    Google Scholar 

  18. Peter, F., Plutner, H., Zhu, H., Kreis, T. E. & Balch, W. E. β-COP is essential for transport of protein from the endoplasmic reticulum to the Golgi in vitro. J. Cell Biol. 122, 1155–1168 (1993).

    Google Scholar 

  19. Balch, W. E., McCaffery, J. M., Pluttner, H. & Farquhar, M. G. Vesicular stomatitis virus is sorted and concentrated upon exit from the endoplasmic reticulum. Cell 76, 841–852 (1994).

    Google Scholar 

  20. Bannykh, S. I., Rowe, T. & Balch, W. E. The organization of endoplasmic reticulum export complexes. J. Cell Biol. 135, 19–35 (1996).

    Google Scholar 

  21. Kuismanen, E. & Saraste, J. Low temperature-induced transport blocks as tools to manipulate membrane traffic. Methods Cell Biol. 32, 257–274 (1989).

    Google Scholar 

  22. Hauri, H. -P. & Schweizer, A. The endoplasmic reticulum–Golgi intermediate compartment. Curr. Opin. Cell Biol. 4, 600–608 (1992).

    Google Scholar 

  23. Lotti, L. V., Torrisi, M. R., Pascale, M. C. & Bonatti, S. Immunocytochemical analysis of the transfer of vesicular stomatitis virus G glycoprotein from the intermediate compartment to the Golgi complex. J. Cell Biol. 118, 43–50 (1992).

    Google Scholar 

  24. Walker, R. A. & Sheetz, M. P. Cytoplasmic microtubule-associated motors. Annu. Rev. Biochem. 62, 429–451 (1993).

    Google Scholar 

  25. Cole, N. B.et al. Diffusional mobility of Golgi proteins in membranes of living cells. Science 273, 797–801 (1996).

    Google Scholar 

  26. Schroer, T. A., Bingham, J. B. & Gill, S. R. Actin-related protein 1 and cytoplasmic dynein-based motility: What's the connection? Trends Cell Biol. 6, 212–215 (1996).

    Google Scholar 

  27. Gaglio, T.et al. Opposing motor activities are required for the organization of the mammalian mitotic spindle pole. J. Cell Biol. 135, 399–414 (1996).

    Google Scholar 

  28. Echeverri, C. J., Paschal, B. B., Vaughan, K. T. & Vallee, R. B. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol. 132, 617–633 (1996).

    Google Scholar 

  29. Burkhardt, J. K., Echeverri, C. J. & Vallee, R. B. Overexpression of the p50 subunit of dynactin perturbs the positioning of the Golgi apparatus and endosomes. Mol. Biol. Cell 6, 266a (1995).

    Google Scholar 

  30. Gallione, C. J. & Rose, J. K. Asingle amino acid substitution in a hydrophobic domain causes temperature-sensitive cell-surface transport of a mutant viral glycoprotein. J. Virol. 54, 374–382 (1985).

    Google Scholar 

  31. Vaisberg, E. A., Grissom, P. M. & McIntosh, J. R. Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles. J. Cell Biol. 133, 831–842 (1996).

    Google Scholar 

Download references

Acknowledgements

We thank R. Klausner, E. Siggia, J. Bonifacino, C. Smith, J. Donaldson, J. Ellenberg and R. Stearman for valuable comments and suggestions, and J. Rose for his generous gift of reagent.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Presley, J., Cole, N., Schroer, T. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997). https://doi.org/10.1038/38001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/38001

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing