Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Long-term potentiation and functional synapse induction in developing hippocampus

Abstract

LONG-TERM potentiation (LTP) is a cellular mechanism that potentially underlies learning and memory1. To test the hypothesis that LTP is involved in activity-dependent synapse formation, we combined whole-cell recordings and confocal microscopy to investigate hippocampal glutamatergic synapses at their earliest stages of development. Here we report that, during the first postnatal week, the hippocampal glutamatergic network becomes gradually functional owing to the transformation of precursor, pure NMDA (N-methyl-D-aspartate)-receptor-based synaptic contacts into conducting AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-proprionate)/NMDA-receptor-type synapses. This functional synapse induction is caused by an associative form of LTP, so it is input-specific and easily triggered experimentally by pairing presynaptic stimulation with post-synaptic depolarization. Our results challenge previous views that LTP occurs in the hippocampus only at later stages of development2–6 and that its induction requires dendritic spines7. They also provide direct evidence that LTP is important for the activity-dependent formation of conducting glutamatergic synapses in the developing mammalian brain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Bliss, T. V. P. & Collingridge, G. L. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Bolshakov, V. Y. & Siegelbaum, S. A. Science 264, 1148–1152 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Dudek, S. M. & Bear, M. F. J. Neurosci. 13(7), 2910–2918 (1993).

    Article  CAS  Google Scholar 

  4. Bekenstein, J. W. & Lothman, E. W. Dev. Brain Res. 63, 245–251 (1991).

    Article  CAS  Google Scholar 

  5. Harris, K. M. & Teyler, T. J. J. Physiol., Lond. 346, 27–48 (1984).

    Article  CAS  Google Scholar 

  6. Baudry, M., Arst, D., Oliver, M. & Lynch, G. Brain Res. 227(1), 37–48 (1981).

    Article  CAS  Google Scholar 

  7. Harris, K. M. & Kater, S. B. A. Rev. Neurosci. 17, 341–371 (1994).

    Article  CAS  Google Scholar 

  8. Bayer, S. A. J. comp. Neurol. 190, 87–114 (1980).

    Article  CAS  Google Scholar 

  9. Edwards, F., Konnerth, A., Sakmann, B. & Takahashi, T. Pflügers Arch. 414, 600–612 (1989).

    Article  CAS  Google Scholar 

  10. Hestrin, S., Nicoll, R. A., Perkel, D. J. & Sah, P. J. Physiol., Lond. 422, 203–225 (1990).

    Article  CAS  Google Scholar 

  11. Liao, D., Hessler, N. A. & Malinow, R. Nature 375, 400–404 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Isaac, J. T. R., Nicoll, R. A. & Malenka, R. C. Neuron 15, 427–434 (1995).

    Article  CAS  Google Scholar 

  13. Yuste, R. & Denk, W. Nature 375, 682–684 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Steward, O. & Falk, P. M. J. comp. Neurol. 314, 545–557 (1991).

    Article  CAS  Google Scholar 

  15. Partin, K. M. et al. Neuron 11, 1069–1082 (1993).

    Article  CAS  Google Scholar 

  16. Wong, L. A. & Mayer, M. L. Molec. Pharmac. 44, 504–510 (1993).

    CAS  Google Scholar 

  17. Lynch, G. et al. Nature 305, 719–721 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Malenka, R. C., Kauer, J. A., Zucker, R. S. & Nicoll, R. S. Science 242, 81–84 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Gustafsson, B. & Wigström, H. Trends Neurosci. 11, 156–162 (1988).

    Article  CAS  Google Scholar 

  20. Hebb, D. O. The Organization of Behaviour (Wiley, New York, 1949).

    Google Scholar 

  21. Bekkers, J. M. & Stevens, C. F. Nature 341, 230–233 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Konnerth, A., Keller, B. U. & Lev-Tov, A. Pflügers Arch 417, 285–290 (1990).

    Article  CAS  Google Scholar 

  23. Konnerth, A. Trends Neurosci. 13, 321–323 (1990).

    Article  CAS  Google Scholar 

  24. Eilers, J., Augustine, G. J. & Konnerth, A. Nature 373, 155–158 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Eilers, J., Callewaert, G., Armstrong, C. & Konnerth, A. Proc. natn. Acad. Sci. U.S.A. 92, 10272–10276 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durand, G., Kovalchuk, Y. & Konnerth, A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381, 71–75 (1996). https://doi.org/10.1038/381071a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381071a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing